

A326181


Numbers n for which sigma(sigma(n)) = 3*sigma(n).


5



54, 56, 87, 95, 276, 308, 429, 446, 455, 501, 581, 611, 158928, 194928, 195072, 199950, 226352, 234608, 236432, 248325, 255678, 263504, 266192, 273050, 275415, 304575, 336903, 341162, 353675, 366575, 369425, 369843, 380463, 386313, 389463, 406565, 411725, 415925, 422303, 447587, 468743, 497333, 500993, 511829, 515267, 519557, 519677
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Any odd perfect numbers must occur in this sequence, as such numbers must be in the intersection of A000396 and A326051, that is, satisfy both sigma(n) = 2n and sigma(2n) = 6n = 3*2n, thus in combination they must satisfy sigma(sigma(n)) = 3*sigma(n). Note that odd perfect numbers should occur also in A019283.
If, as conjectured, A005820 has 6 terms, then this sequence is finite and has 756 terms.  Giovanni Resta, Jun 17 2019


LINKS

Giovanni Resta, Table of n, a(n) for n = 1..756 (first 169 terms from Antti Karttunen)
Index entries for sequences where any odd perfect numbers must occur


PROG

(PARI) isA326181(n) = { my(s=sigma(n)); (sigma(s)==3*s); };


CROSSREFS

Cf. A000203, A000396, A005820, A019283, A051027, A087943, A272027 (3*sigma(n)), A326051.
Subsequence of A066961.
Sequence in context: A116386 A107936 A252722 * A300447 A344809 A344810
Adjacent sequences: A326178 A326179 A326180 * A326182 A326183 A326184


KEYWORD

nonn


AUTHOR

Antti Karttunen, Jun 16 2019


STATUS

approved



