login
A252722
Number of (3+2) X (n+2) 0..3 arrays with every consecutive three elements in every row and diagonal having exactly two distinct values, and in every column and antidiagonal not having exactly two distinct values, and new values 0 upwards introduced in row major order.
1
54, 56, 62, 70, 86, 110, 114, 158, 194, 214, 290, 374, 402, 566, 722, 790, 1106, 1430, 1554, 2198, 2834, 3094, 4370, 5654, 6162, 8726, 11282, 12310, 17426, 22550, 24594, 34838, 45074, 49174, 69650, 90134, 98322, 139286, 180242, 196630, 278546, 360470
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = a(n-2) + 2*a(n-3) - 2*a(n-5) for n>6.
Empirical g.f.: 2*x*(27 + 28*x + 4*x^2 - 47*x^3 - 44*x^4 + 12*x^5) / ((1 - x)*(1 + x)*(1 - 2*x^3)). - Colin Barker, Dec 05 2018
EXAMPLE
Some solutions for n=4:
..0..0..1..0..0..1....0..1..0..0..1..0....0..0..1..0..0..1....0..1..1..2..1..1
..0..2..2..0..2..2....1..1..2..1..1..2....2..1..1..3..1..1....1..0..1..1..2..1
..0..1..0..0..1..0....2..1..1..2..1..1....1..2..1..1..3..1....3..3..1..3..3..1
..0..0..1..0..0..1....3..1..3..3..1..3....0..0..1..0..0..1....0..1..1..0..1..1
..0..3..3..0..3..3....1..1..2..1..1..2....3..1..1..2..1..1....1..2..1..1..0..1
CROSSREFS
Row 3 of A252719.
Sequence in context: A247900 A116386 A107936 * A326181 A300447 A344809
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 20 2014
STATUS
approved