login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332359
Consider a partition of the triangle with vertices (0, 0), (1, 0), (0, 1) by the lines a_1*x_1 + a_2*x_2 = 1, where (x_1, x_2) is in {1, 2,...,m} X {1, 2,...,n}, m >= 1, n >= 1. Triangle read by rows: T(m,n) = number of edges in the partition, for m >= n >= 1.
3
3, 5, 10, 7, 17, 30, 9, 26, 49, 82, 11, 37, 71, 121, 180, 13, 50, 99, 172, 259, 374, 15, 65, 130, 227, 342, 495, 656, 17, 82, 167, 294, 445, 646, 859, 1126, 19, 101, 207, 367, 557, 811, 1080, 1417, 1784, 21, 122, 253, 450, 685, 1000, 1333, 1750, 2205, 2726, 23, 145, 302, 539, 821, 1199, 1597, 2097, 2642, 3267, 3916
OFFSET
1,1
LINKS
M. A. Alekseyev, M. Basova, and N. Yu. Zolotykh. On the minimal teaching sets of two-dimensional threshold functions. SIAM Journal on Discrete Mathematics 29:1 (2015), 157-165. doi:10.1137/140978090. See Theorem 13.
N. J. A. Sloane, Illustration for (m,n) = (2,2), (3,1), (3,2), (3,3) [c_3 = number of triangles, c_4 = number of quadrilaterals; c, e, v = numbers of cells, edges, vertices]
FORMULA
T(m,n) = (3*A332354(m,n) + 4*A332356(m,n) + m + n + 1)/2.
EXAMPLE
Triangle begins:
3,
5, 10,
7, 17, 30,
9, 26, 49, 82,
11, 37, 71, 121, 180,
13, 50, 99, 172, 259, 374,
15, 65, 130, 227, 342, 495, 656,
17, 82, 167, 294, 445, 646, 859, 1126,
19, 101, 207, 367, 557, 811, 1080, 1417, 1784,
21, 122, 253, 450, 685, 1000, 1333, 1750, 2205, 2726,
...
MAPLE
VR := proc(m, n, q) local a, i, j; a:=0;
for i from -m+1 to m-1 do for j from -n+1 to n-1 do
if gcd(i, j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end;
cte := proc(m, n) local i; global VR;
if m=1 or n=1 then 2*max(m, n)+1 else VR(m, n, 1)/2-VR(m, n, 2)/4+m+n; fi; end;
for m from 1 to 12 do lprint([seq(cte(m, n), n=1..m)]); od:
CROSSREFS
Cf. A332350, A332352, A332354, A332357 (edges).
Main diagonal is A332360.
Sequence in context: A211414 A173706 A365440 * A328070 A286592 A176629
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Feb 11 2020
STATUS
approved