login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Consider a partition of the triangle with vertices (0, 0), (1, 0), (0, 1) by the lines a_1*x_1 + a_2*x_2 = 1, where (x_1, x_2) is in {1, 2,...,m} X {1, 2,...,n}, m >= 1, n >= 1. Triangle read by rows: T(m,n) = number of edges in the partition, for m >= n >= 1.
3

%I #14 Feb 12 2020 01:05:54

%S 3,5,10,7,17,30,9,26,49,82,11,37,71,121,180,13,50,99,172,259,374,15,

%T 65,130,227,342,495,656,17,82,167,294,445,646,859,1126,19,101,207,367,

%U 557,811,1080,1417,1784,21,122,253,450,685,1000,1333,1750,2205,2726,23,145,302,539,821,1199,1597,2097,2642,3267,3916

%N Consider a partition of the triangle with vertices (0, 0), (1, 0), (0, 1) by the lines a_1*x_1 + a_2*x_2 = 1, where (x_1, x_2) is in {1, 2,...,m} X {1, 2,...,n}, m >= 1, n >= 1. Triangle read by rows: T(m,n) = number of edges in the partition, for m >= n >= 1.

%H M. A. Alekseyev, M. Basova, and N. Yu. Zolotykh. <a href="https://doi.org/10.1137/140978090">On the minimal teaching sets of two-dimensional threshold functions</a>. SIAM Journal on Discrete Mathematics 29:1 (2015), 157-165. doi:10.1137/140978090. See Theorem 13.

%H N. J. A. Sloane, <a href="/A332357/a332357.pdf">Illustration for (m,n) = (2,2), (3,1), (3,2), (3,3)</a> [c_3 = number of triangles, c_4 = number of quadrilaterals; c, e, v = numbers of cells, edges, vertices]

%F T(m,n) = (3*A332354(m,n) + 4*A332356(m,n) + m + n + 1)/2.

%e Triangle begins:

%e 3,

%e 5, 10,

%e 7, 17, 30,

%e 9, 26, 49, 82,

%e 11, 37, 71, 121, 180,

%e 13, 50, 99, 172, 259, 374,

%e 15, 65, 130, 227, 342, 495, 656,

%e 17, 82, 167, 294, 445, 646, 859, 1126,

%e 19, 101, 207, 367, 557, 811, 1080, 1417, 1784,

%e 21, 122, 253, 450, 685, 1000, 1333, 1750, 2205, 2726,

%e ...

%p VR := proc(m,n,q) local a,i,j; a:=0;

%p for i from -m+1 to m-1 do for j from -n+1 to n-1 do

%p if gcd(i,j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end;

%p cte := proc(m,n) local i; global VR;

%p if m=1 or n=1 then 2*max(m,n)+1 else VR(m,n,1)/2-VR(m,n,2)/4+m+n; fi; end;

%p for m from 1 to 12 do lprint([seq(cte(m,n),n=1..m)]); od:

%Y Cf. A332350, A332352, A332354, A332357 (edges).

%Y Main diagonal is A332360.

%K nonn,tabl

%O 1,1

%A _N. J. A. Sloane_, Feb 11 2020