login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332352
Triangle read by rows: T(m,n) = Sum_{-m<i<m, -n<j<n, gcd{i,j}=2} (m-|i|)*(n-|j|), m >= n >= 1.
15
0, 0, 0, 2, 4, 16, 4, 8, 28, 48, 6, 12, 44, 76, 120, 8, 16, 60, 104, 164, 224, 10, 20, 80, 140, 224, 308, 424, 12, 24, 100, 176, 284, 392, 540, 688, 14, 28, 124, 220, 356, 492, 680, 868, 1096, 16, 32, 148, 264, 428, 592, 820, 1048, 1324, 1600, 18, 36, 176, 316, 516, 716, 996, 1276, 1616, 1956, 2392
OFFSET
1,4
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..11325 (rows 1..150 of the triangle, flattened)
M. A. Alekseyev, M. Basova, and N. Yu. Zolotykh. On the minimal teaching sets of two-dimensional threshold functions. SIAM Journal on Discrete Mathematics 29:1 (2015), 157-165. doi:10.1137/140978090. This sequence is f_2(m,n).
EXAMPLE
Triangle begins:
0,
0, 0,
2, 4, 16,
4, 8, 28, 48,
6, 12, 44, 76, 120,
8, 16, 60, 104, 164, 224,
10, 20, 80, 140, 224, 308, 424,
12, 24, 100, 176, 284, 392, 540, 688,
14, 28, 124, 220, 356, 492, 680, 868, 1096,
16, 32, 148, 264, 428, 592, 820, 1048, 1324, 1600,
...
MAPLE
VR := proc(m, n, q) local a, i, j; a:=0;
for i from -m+1 to m-1 do for j from -n+1 to n-1 do
if gcd(i, j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end;
for m from 1 to 12 do lprint(seq(VR(m, n, 2), n=1..m), ); od:
MATHEMATICA
A332352[m_, n_]:=Sum[If[GCD[i, j]==2, 4(m-i)(n-j), 0], {i, 2, m-1, 2}, {j, 2, n-1, 2}]+If[n>2, 2(m*n-2m), 0]+If[m>2, 2(m*n-2n), 0]; Table[A332352[m, n], {m, 15}, {n, m}] (* Paolo Xausa, Oct 18 2023 *)
CROSSREFS
The main diagonal is A331772.
Sequence in context: A125594 A097542 A277850 * A217291 A364247 A338839
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Feb 10 2020
STATUS
approved