OFFSET
1,3
COMMENTS
REFERENCES
Jovisa Zunic, Note on the number of two-dimensional threshold functions, SIAM J. Discrete Math. Vol. 25 (2011), No. 3, pp. 1266-1268. See Equation (1.2).
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..11325 (rows 1..150 of the triangle, flattened)
M. A. Alekseyev, M. Basova, and N. Yu. Zolotykh. On the minimal teaching sets of two-dimensional threshold functions. SIAM Journal on Discrete Mathematics 29:1 (2015), 157-165. doi:10.1137/140978090. This sequence is f_1(m,n)/2.
EXAMPLE
Triangle begins:
0,
1, 6,
2, 13, 28,
3, 22, 49, 86,
4, 33, 74, 131, 200,
5, 46, 105, 188, 289, 418,
6, 61, 140, 251, 386, 559, 748,
7, 78, 181, 326, 503, 730, 979, 1282,
8, 97, 226, 409, 632, 919, 1234, 1617, 2040,
9, 118, 277, 502, 777, 1132, 1521, 1994, 2517, 3106,
...
MAPLE
VR := proc(m, n, q) local a, i, j; a:=0;
for i from -m+1 to m-1 do for j from -n+1 to n-1 do
if gcd(i, j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end;
for m from 1 to 12 do lprint(seq(VR(m, n, 1)/2, n=1..m), ); od:
MATHEMATICA
A332351[m_, n_]:=Sum[If[CoprimeQ[i, j], 2(m-i)(n-j), 0], {i, m-1}, {j, n-1}]+2m*n-m-n; Table[A332351[m, n], {m, 15}, {n, m}] (* Paolo Xausa, Oct 18 2023 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Feb 10 2020
STATUS
approved