login
A332351
Triangle read by rows: T(m,n) = Sum_{-m<i<m, -n<j<n, gcd{i,j}=1} (m-|i|)*(n-|j|)/2, m >= n >= 1.
4
0, 1, 6, 2, 13, 28, 3, 22, 49, 86, 4, 33, 74, 131, 200, 5, 46, 105, 188, 289, 418, 6, 61, 140, 251, 386, 559, 748, 7, 78, 181, 326, 503, 730, 979, 1282, 8, 97, 226, 409, 632, 919, 1234, 1617, 2040, 9, 118, 277, 502, 777, 1132, 1521, 1994, 2517, 3106, 10, 141, 332, 603, 934, 1361, 1828, 2397, 3026, 3735, 4492
OFFSET
1,3
COMMENTS
This is the triangle in A332350, halved.
This triangle is the lower half of the array defined in A115009.
REFERENCES
Jovisa Zunic, Note on the number of two-dimensional threshold functions, SIAM J. Discrete Math. Vol. 25 (2011), No. 3, pp. 1266-1268. See Equation (1.2).
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..11325 (rows 1..150 of the triangle, flattened)
M. A. Alekseyev, M. Basova, and N. Yu. Zolotykh. On the minimal teaching sets of two-dimensional threshold functions. SIAM Journal on Discrete Mathematics 29:1 (2015), 157-165. doi:10.1137/140978090. This sequence is f_1(m,n)/2.
EXAMPLE
Triangle begins:
0,
1, 6,
2, 13, 28,
3, 22, 49, 86,
4, 33, 74, 131, 200,
5, 46, 105, 188, 289, 418,
6, 61, 140, 251, 386, 559, 748,
7, 78, 181, 326, 503, 730, 979, 1282,
8, 97, 226, 409, 632, 919, 1234, 1617, 2040,
9, 118, 277, 502, 777, 1132, 1521, 1994, 2517, 3106,
...
MAPLE
VR := proc(m, n, q) local a, i, j; a:=0;
for i from -m+1 to m-1 do for j from -n+1 to n-1 do
if gcd(i, j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end;
for m from 1 to 12 do lprint(seq(VR(m, n, 1)/2, n=1..m), ); od:
MATHEMATICA
A332351[m_, n_]:=Sum[If[CoprimeQ[i, j], 2(m-i)(n-j), 0], {i, m-1}, {j, n-1}]+2m*n-m-n; Table[A332351[m, n], {m, 15}, {n, m}] (* Paolo Xausa, Oct 18 2023 *)
CROSSREFS
The main diagonal is A141255, or A114043 - 1.
This is the lower triangle of the array in A115009.
Sequence in context: A106034 A194036 A194100 * A142867 A080977 A095951
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Feb 10 2020
STATUS
approved