login
A332264
Partial sums of A334136.
3
0, 3, 11, 32, 56, 116, 164, 269, 373, 535, 655, 963, 1131, 1443, 1779, 2244, 2532, 3195, 3555, 4353, 4993, 5749, 6277, 7657, 8401, 9451, 10491, 12003, 12843, 14931, 15891, 17844, 19380, 21162, 22794, 25979, 27347, 29567, 31695, 35205, 36885, 40821, 42669, 46281, 49713, 52953, 55161, 60989, 63725, 68282
OFFSET
1,2
COMMENTS
a(n) is also the volume after n-th step of the symmetric staircase described in A244580 except the volume of the base level.
FORMULA
a(n) = A143128(n) - A024916(n).
a(n) = A256533(n) - A175254(n). - Omar E. Pol, Apr 29 2020
EXAMPLE
For n = 4 the volume of the first four levels of the symmetric staircase described in A244580 is 47, since the structure contains 47 cubes. The volume of the base level is 15, since the base of the structure contains 15 cubes, so a(4) = 47 - 15 = 32.
PROG
(PARI) a(n) = sum(k=1, n, (k-1)*sigma(k)); \\ Michel Marcus, Apr 19 2020
(Python)
from math import isqrt
def A332264(n): return (((s:=isqrt(n))**2*(s+1)*(6-(s+1)*((s<<1)+1))>>1)+sum((q:=n//k)*(k*(q+1)*(3*k+(q<<1)+1)-3*((k<<1)+q+1)) for k in range(1, s+1)))//6 # Chai Wah Wu, Oct 25 2023
KEYWORD
nonn
AUTHOR
Omar E. Pol, Apr 19 2020
STATUS
approved