login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331867
Numbers n for which R(n) + 3*10^floor(n/2-1) is prime, where R(n) = (10^n-1)/9 (repunit: A002275).
3
68, 5252, 5494, 7102
OFFSET
1,1
COMMENTS
The corresponding primes are a subsequence of A105992: near-repunit primes.
In base 10, R(n) + 3*10^floor(n/2-1) has ceiling(n/2) digits 1, one digit 4, and again floor(n/2-1) digits 1. For odd and even n, the digit 4 is just to the right of the middle of the number.
For odd n = 2m + 1, f(n) = R(n) + 3*10^floor(n/2-1) is divisible by 3, 7 or 13 when m is congruent 1 or 4, 3 or 5, resp. 0 or 2 (mod 6): there can't be an odd term.
For even n = 2m, f(n) is divisible by 3 or 7 when m is congruent to 0 or 3, resp. 1 or 2 (mod 6). When m = 6k + 4, then f(n) is prime for k = 5 and 437 (and no further k <= 600), and divisible by 23 or 53 when k is congruent to 10 (mod 11) resp. 3 (mod 13). When m = 6k + 5, f(n) is prime for k = 457 and 591 and no other value up to 600, and divisible by 23, 47, 53, 97, 163, 181, 859, ... for k congruent to 5 (mod 11), 11 (mod 23), 5 (mod 13), 0 (mod 32), 13 (mod 27), 26 (mod 30), 3 (mod 13), ..., respectively.
a(5) > 7272.
EXAMPLE
For n = 2, R(2) + 3*10^floor(2/2-1) = 14 = 2*7 is not prime.
For n = 3, R(3) + 3*10^floor(3/2-1) = 114 = 2*3*19 is not prime.
For n = 4, R(4) + 3*10^floor(4/2) = 1141 = 7*163 is not prime.
For n = 5, R(5) + 3*10^floor(5/2) = 11141 = 13*857 is not prime.
For n = 68, R(68) + 3*10^floor(68/2) = 1...1141...1 is prime, with 34 digits '1' to the left of a digit '4' and 33 digits '1' to its right.
MATHEMATICA
Select[Range[2, 2500], PrimeQ[(10^# - 1)/9 + 3*10^Floor[#/2 - 1]] &] (* corrected by Amiram Eldar, Feb 10 2020 *)
PROG
(PARI) for(n=2, 9999, isprime(p=10^n\9+3*10^(n\2-1))&&print1(n", "))
CROSSREFS
Cf. A105992 (near-repunit primes), A002275 (repunits), A004023 (indices of prime repunits), A011557 (powers of 10).
Cf. A331860, A331863, A331864 (variants with digit 2, 0 resp. 3 instead of 4), A331866 (variant with floor(n/2) instead of floor(n/2-1)).
Sequence in context: A223226 A252977 A265243 * A267064 A159365 A145623
KEYWORD
nonn,base,hard,more
AUTHOR
M. F. Hasler, Jan 30 2020
STATUS
approved