

A105992


Nearrepunit primes.


16



101, 113, 131, 151, 181, 191, 211, 311, 811, 911, 1117, 1151, 1171, 1181, 1511, 1811, 2111, 4111, 8111, 10111, 11113, 11117, 11119, 11131, 11161, 11171, 11311, 11411, 16111, 101111, 111119, 111121, 111191, 111211, 111611, 112111, 113111, 131111, 311111, 511111
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

According to the prime glossary "a nearrepunit prime is a prime all but one of whose digits are 1." This would also include {2, 3, 5, 7, 13, 17, 19, 31, 41, 61 and 71}, but this sequence only lists terms with more than two digits.  M. F. Hasler, Feb 10 2020


REFERENCES

C. Caldwell and H. Dubner, "The near repunit primes 1(nk1)01(1k)," J. Recreational Math., 27 (1995) 3541.
Heleen, J. P., "More nearrepunit primes 1(nk1)D(1)1(k), D=2,3, ..., 9," J. Recreational Math., 29:3 (1998) 190195.


LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000
Chris Caldwell, The Top 20 Nearrepdigit Primes
Chris Caldwell, The Prime Glossary, Nearrepunit prime


EXAMPLE

a(2)=113 is a term because 113 is a prime and all digits are 1 except one.


MATHEMATICA

lst = {}; Do[r = (10^n  1)/9; Do[AppendTo[lst, DeleteCases[Select[FromDigits[Permutations[Append[IntegerDigits[r], d]]], PrimeQ], r]], {d, 0, 9}], {n, 2, 14}]; Sort[Flatten[lst]] (* Arkadiusz Wesolowski, Sep 20 2011 *)


CROSSREFS

Cf. A000042, A002275, A004022, A046053, A046413, A065074, A034093, A065083, A102782, A118505.
Sequence in context: A069691 A084414 A164937 * A038370 A084430 A182693
Adjacent sequences: A105989 A105990 A105991 * A105993 A105994 A105995


KEYWORD

base,nonn


AUTHOR

Shyam Sunder Gupta, Apr 29 2005


STATUS

approved



