login
A331821
Positive numbers k such that -k and -(k + 1) are both negabinary-Niven numbers (A331728).
2
2, 3, 8, 9, 15, 24, 27, 32, 33, 39, 54, 55, 63, 77, 111, 114, 115, 123, 128, 129, 135, 144, 159, 174, 175, 203, 234, 235, 245, 255, 264, 294, 295, 329, 370, 371, 384, 413, 414, 415, 444, 447, 474, 475, 495, 504, 507, 512, 513, 519, 534, 535, 543, 580, 581, 624
OFFSET
1,1
LINKS
EXAMPLE
8 is a term since both -8 and -(8 + 1) = -9 are negabinary-Niven numbers: A039724(-8) = 1000 and 1 + 0 + 0 + 0 = 1 is a divisor of 8, and A039724(-9) = 1011 and 1 + 0 + 1 + 1 = 3 is a divisor of 9.
MATHEMATICA
negaBinWt[n_] := negaBinWt[n] = If[n == 0, 0, negaBinWt[Quotient[n - 1, -2]] + Mod[n, 2]]; negaBinNivenQ[n_] := Divisible[n, negaBinWt[-n]]; c = 0; k = 1; s = {}; v = Table[-1, {2}]; While[c < 60, If[negaBinNivenQ[k], v = Join[Rest[v], {k}]; If[AllTrue[Differences[v], # == 1 &], c++; AppendTo[s, k - 1]]]; k++]; s
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Jan 27 2020
STATUS
approved