login
A331819
Positive numbers k such that -k is a negative negabinary-Niven number, i.e., divisible by the sum of digits of its negabinary representation (A027615).
5
2, 3, 4, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 28, 30, 32, 33, 34, 36, 39, 40, 42, 44, 48, 54, 55, 56, 60, 63, 64, 66, 68, 70, 72, 77, 78, 80, 84, 90, 92, 96, 100, 102, 104, 108, 111, 112, 114, 115, 116, 120, 123, 124, 126, 128, 129, 130, 132, 135, 136, 138, 140
OFFSET
1,1
LINKS
EXAMPLE
6 is a term since A039724(-6) = 1110 and 1 + 1 + 1 + 0 = 3 is a divisor of 6.
MATHEMATICA
negaBinWt[n_] := negaBinWt[n] = If[n==0, 0, negaBinWt[Quotient[n-1, -2]] + Mod[n, 2]]; negaBinNivenQ[n_] := Divisible[n, negaBinWt[-n]]; Select[Range[100], negaBinNivenQ]
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Jan 27 2020
STATUS
approved