login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331343
a(n) = lcm(1,2,...,n) * Sum_{k=1..n} (2^(k-1) - 1) / k.
0
0, 1, 9, 39, 375, 685, 8575, 30485, 162855, 291627, 5785857, 10514427, 250200951, 461037291, 854622483, 3185234481, 101381371377, 190598779657, 6833215763803, 12935721409039, 24559552771039, 46750514134519, 2051664357879617, 3923102768811707, 37581323659852375
OFFSET
1,3
COMMENTS
By Wolstenholme's theorem, if p > 3 is a prime, then p^3 | a(p).
Conjecture: for n > 3, if n^3 | a(n), then n is prime. If so, there are no such pseudoprimes.
Problem: are there weak pseudoprimes m such that m^2 | a(m)? None up to 5*10^4.
Composite numbers m such that m | a(m) are 9, 25, 49, 99, 121, 125, 169, 221, 289, 343, 357, 361, 399, 529, 665, 841, 961, 1331, 1369, 1443, 1681, 1849, 2183, ... Cf. A082180.
Prime numbers p such that p^4 | a(p) are probably only the Wolstenholme primes A088164.
FORMULA
a(n) = A003418(n) * A330718(n) / A330719(n).
MATHEMATICA
a[n_] := LCM @@ Range[n] * Sum[(2^(k-1) - 1) / k, {k, 1, n}]; Array[a, 25]
PROG
(Magma) [Lcm([1..n])*&+[(2^(k-1)-1)/k:k in [1..n]]:n in [1..25]]; // Marius A. Burtea, Jan 14 2020
(PARI) a(n) = lcm([1..n])*sum(k=1, n, (2^(k-1) - 1) / k); \\ Michel Marcus, Jan 14 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar and Thomas Ordowski, Jan 14 2020
STATUS
approved