OFFSET
1,3
COMMENTS
By Wolstenholme's theorem, if p > 3 is a prime, then p^3 | a(p).
Conjecture: for n > 3, if n^3 | a(n), then n is prime. If so, there are no such pseudoprimes.
Problem: are there weak pseudoprimes m such that m^2 | a(m)? None up to 5*10^4.
Composite numbers m such that m | a(m) are 9, 25, 49, 99, 121, 125, 169, 221, 289, 343, 357, 361, 399, 529, 665, 841, 961, 1331, 1369, 1443, 1681, 1849, 2183, ... Cf. A082180.
Prime numbers p such that p^4 | a(p) are probably only the Wolstenholme primes A088164.
LINKS
Wikipedia, Wolstenholme's theorem.
MATHEMATICA
a[n_] := LCM @@ Range[n] * Sum[(2^(k-1) - 1) / k, {k, 1, n}]; Array[a, 25]
PROG
(Magma) [Lcm([1..n])*&+[(2^(k-1)-1)/k:k in [1..n]]:n in [1..25]]; // Marius A. Burtea, Jan 14 2020
(PARI) a(n) = lcm([1..n])*sum(k=1, n, (2^(k-1) - 1) / k); \\ Michel Marcus, Jan 14 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar and Thomas Ordowski, Jan 14 2020
STATUS
approved