login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = lcm(1,2,...,n) * Sum_{k=1..n} (2^(k-1) - 1) / k.
0

%I #11 Sep 08 2022 08:46:25

%S 0,1,9,39,375,685,8575,30485,162855,291627,5785857,10514427,250200951,

%T 461037291,854622483,3185234481,101381371377,190598779657,

%U 6833215763803,12935721409039,24559552771039,46750514134519,2051664357879617,3923102768811707,37581323659852375

%N a(n) = lcm(1,2,...,n) * Sum_{k=1..n} (2^(k-1) - 1) / k.

%C By Wolstenholme's theorem, if p > 3 is a prime, then p^3 | a(p).

%C Conjecture: for n > 3, if n^3 | a(n), then n is prime. If so, there are no such pseudoprimes.

%C Problem: are there weak pseudoprimes m such that m^2 | a(m)? None up to 5*10^4.

%C Composite numbers m such that m | a(m) are 9, 25, 49, 99, 121, 125, 169, 221, 289, 343, 357, 361, 399, 529, 665, 841, 961, 1331, 1369, 1443, 1681, 1849, 2183, ... Cf. A082180.

%C Prime numbers p such that p^4 | a(p) are probably only the Wolstenholme primes A088164.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Wolstenholme%27s_theorem">Wolstenholme's theorem</a>.

%F a(n) = A003418(n) * A330718(n) / A330719(n).

%t a[n_] := LCM @@ Range[n] * Sum[(2^(k-1) - 1) / k, {k, 1, n}]; Array[a, 25]

%o (Magma) [Lcm([1..n])*&+[(2^(k-1)-1)/k:k in [1..n]]:n in [1..25]]; // _Marius A. Burtea_, Jan 14 2020

%o (PARI) a(n) = lcm([1..n])*sum(k=1, n, (2^(k-1) - 1) / k); \\ _Michel Marcus_, Jan 14 2020

%Y Cf. A003418, A025529, A082180, A088164, A330718, A330719.

%K nonn

%O 1,3

%A _Amiram Eldar_ and _Thomas Ordowski_, Jan 14 2020