login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331166
a(n) = min(n, A057889(n)), where A057889 is bijective base-2 reverse.
6
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 19, 22, 27, 28, 23, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 37, 42, 43, 44, 45, 46, 47, 48, 35, 38, 51, 44, 43, 54, 55, 56, 39, 46, 55, 60, 47, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 69, 74, 83, 84, 85, 86, 87, 88, 77, 90, 91, 92, 93, 94, 95, 96, 67, 70
OFFSET
0,3
COMMENTS
There is a large number of sequences b, related to binary expansion of n (A007088), for which it holds that b(n) = b(a(n)) for all n >= 0 (or n >= 1). For example, we have:
For all i, j:
a(i) = a(j) => A002487(i) = A002487(j),
a(i) = a(j) => A005811(i) = A005811(j),
a(i) = a(j) => A286622(i) = A286622(j) => A000120(i) = A000120(j).
For all i, j > 0:
a(i) = a(j) => A007814(i) = A007814(j),
a(i) = a(j) => A280505(i) = A280505(j),
a(i) = a(j) => A305788(i) = A305788(j) => A091222(i) = A091222(j).
FORMULA
a(n) = min(n, A057889(n)).
PROG
(PARI)
A030101(n) = if(n<1, 0, subst(Polrev(binary(n)), x, 2));
A057889(n) = if(!n, n, A030101(n/(2^valuation(n, 2))) * (2^valuation(n, 2)));
A331166(n) = min(n, A057889(n));
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Jan 12 2020
STATUS
approved