login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330908
a(n+1) = a(n) + (number of divisors of a(n) that are not divisors of other divisors of a(n)) for n>1; a(1)=1.
1
1, 2, 4, 6, 9, 11, 13, 15, 18, 21, 24, 27, 29, 31, 33, 36, 39, 42, 46, 49, 51, 54, 57, 60, 64, 66, 70, 74, 77, 80, 83, 85, 88, 91, 94, 97, 99, 102, 106, 109, 111, 114, 118, 121, 123, 126, 130, 134, 137, 139, 141, 144, 147, 150, 154, 158, 161, 164, 167, 169
OFFSET
1,2
COMMENTS
The sequence is similar built like A094222 but includes 1 as divisor or adds 1 to the number of distinct primes dividing a(n).
LINKS
Samuel Frankmartin-Sebastian Wiethüchter, Table of n, a(n) for n = 1..5000
FORMULA
a(n) = a(n-1) + A083399(a(n-1)) for n>1.
EXAMPLE
For n = 2 calculate a(2)= a(2-1) + A083399(a(2-1))= 1 + 1 = 2;
For n = 3 a(3)=a(2) + A083399(a(2))= 2 + 2 = 4;
For n = 4 a(4)=a(3) + A083399(a(3))= 4 + 2 = 6;
For n = 5 a(5)=a(4) + A083399(a(4))= 6 + 3 = 9;
MAPLE
A330908 := proc(n) option remember;
if n < 2 then
n
else
procname(n-1)+A083399(procname(n-1))
end if;
end proc:
seq(A330908(n), n=1..30);
MATHEMATICA
a[1] = 1; a[n_] := a[n] = a[n - 1] + PrimeNu[a[n - 1]] + 1; Array[a, 60] (* Amiram Eldar, May 01 2020 *)
PROG
(PARI) f(n) = omega(n) + 1; \\ A083399
lista(nn) = {my(a=1, va = List(a)); for (n=2, nn, a = a+f(a); listput(va, a); ); Vec(va); } \\ Michel Marcus, May 03 2020
CROSSREFS
Cf. A094222.
Sequence in context: A330000 A059566 A329826 * A327213 A322532 A284365
KEYWORD
nonn
STATUS
approved