login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A330906 Denominator of 1/Pi^(4*n+3) * Sum_{k>0} (-1)^(k+1) / (k^(4*n+3) * sinh(Pi * k)). 2
360, 453600, 13621608000, 4547140416000, 844351508246400000, 2481187700290640140800000, 4625642784113264833920000000, 72771380848009396571232614400000000, 121040492221732333298138065066291200000000, 4859044199288026228257452368062289920000000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..100

MathStackexchange, A Ramanujan sum involving sinh

Wikipedia, Bernoulli number

FORMULA

Let B_n be the Bernoulli number.

A330905(n)/a(n) = Sum_{k=0..2*n+2} (-1)^k*(1-2^(2*k-1))*(1-2^(4*n+3-2*k))*B_{2*k}*B_{4*n+4-2*k}/((2*k)!*(4*n+4-2*k)!)).

MATHEMATICA

a[n_] := Denominator[Sum[(-1)^k * (1 - 2^(2*k - 1)) * (1 - 2^(4*n + 3 - 2*k)) * BernoulliB[2*k] * BernoulliB[4*n + 4 - 2*k]/((2*k)!*(4*n + 4 - 2*k)!), {k, 0, 2*n + 2}]]; Array[a, 10, 0] (* Amiram Eldar, May 01 2020 *)

PROG

(PARI) {a(n) = denominator(sum(k=0, 2*n+2, (-1)^k*(1-2^(2*k-1))*(1-2^(4*n+3-2*k))*bernfrac(2*k)*bernfrac(4*n+4-2*k)/((2*k)!*(4*n+4-2*k)!)))}

CROSSREFS

Cf. A004767, A057866/A057867, A330905 (numerator).

Sequence in context: A145412 A156032 A295452 * A003799 A003930 A137607

Adjacent sequences:  A330903 A330904 A330905 * A330907 A330908 A330909

KEYWORD

nonn,frac

AUTHOR

Seiichi Manyama, May 01 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 02:56 EST 2020. Contains 338899 sequences. (Running on oeis4.)