login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330895
Numerator of the variance of the random number of comparisons in quicksort applied to lists of length n.
5
0, 0, 0, 2, 29, 46, 3049, 60574, 160599, 182789, 4913659, 1072364, 975570703, 1039388677, 5491155875, 92211937094, 6954047816459, 7225392149719, 2699717387790739, 2785123121790325, 573031978700759, 84009502802237, 45510401082365873, 46518885869845328
OFFSET
0,4
REFERENCES
D. E. Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching, Addison-Wesley, 1973; see answer to Ex. 8(a) of Section 6.2.2.
LINKS
S. B. Ekhad and D. Zeilberger, A detailed analysis of quicksort running time, arXiv:1903.03708 [math.PR], 2019; see Theorem 2.
V. Iliopoulos, The quicksort algorithm and related topics, arXiv:1503.02504 [cs.DS], 2015.
V. Iliopoulos and D. Penman, Variance of the number of comparisons of randomized quicksort, arXiv:1006.4063 [math.PR], 2010.
FORMULA
a(n) = numerator(fr(n)), where fr(n) = n*(7*n + 13) - 2*(n + 1)*Sum_{k=1..n} 1/k - 4*(n + 1)^2*Sum_{k=1..n} 1/k^2.
EXAMPLE
The variances are: 0, 0, 0, 2/9, 29/36, 46/25, 3049/900, 60574/11025, 160599/19600, 182789/15876, 4913659/317520, 1072364/53361, ... = A330895/A330907.
PROG
(PARI) lista(nn) = {my(va = vector(nn)); for(n=1, nn, va[n] = numerator(n*(7*n+13) - 2*(n+1)*sum(k=1, n, 1/k) - 4*(n+1)^2*sum(k=1, n, 1/k^2))); concat(0, va); }
KEYWORD
nonn,frac
AUTHOR
Petros Hadjicostas, May 01 2020
STATUS
approved