OFFSET
0,4
REFERENCES
D. E. Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching, Addison-Wesley, 1973; see answer to Ex. 8(a) of Section 6.2.2.
LINKS
S. B. Ekhad and D. Zeilberger, A detailed analysis of quicksort running time, arXiv:1903.03708 [math.PR], 2019; see Theorem 2.
V. Iliopoulos, The quicksort algorithm and related topics, arXiv:1503.02504 [cs.DS], 2015.
V. Iliopoulos and D. Penman, Variance of the number of comparisons of randomized quicksort, arXiv:1006.4063 [math.PR], 2010.
FORMULA
a(n) = numerator(fr(n)), where fr(n) = n*(7*n + 13) - 2*(n + 1)*Sum_{k=1..n} 1/k - 4*(n + 1)^2*Sum_{k=1..n} 1/k^2.
EXAMPLE
PROG
(PARI) lista(nn) = {my(va = vector(nn)); for(n=1, nn, va[n] = numerator(n*(7*n+13) - 2*(n+1)*sum(k=1, n, 1/k) - 4*(n+1)^2*sum(k=1, n, 1/k^2))); concat(0, va); }
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Petros Hadjicostas, May 01 2020
STATUS
approved