

A330208


Chebyshev pseudoprimes to both base 2 and base 3: composite numbers k such that T(k, 2) == 2 (mod k) and T(k, 3) == 3 (mod k), where T(k, x) is the kth Chebyshev polynomial of the first kind.


3



5719, 6061, 11395, 15841, 17119, 18721, 31535, 67199, 73555, 84419, 117215, 133399, 133951, 174021, 181259, 194833, 226801, 273239, 362881, 469201, 516559, 522899, 534061, 588455, 665281, 700321, 721801, 778261, 903959, 1162349, 1561439, 1708901, 1755001, 1809697
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Bang proved that T(p, a) == a (mod p) for every a > 0 and every odd prime. Rayes et al. (1999) defined Chebyshev pseudoprimes to base a as composite numbers k such that T(k, a) == a (mod k). They noted that there are no Chebyshev pseudoprimes in both bases 2 and 3 below 2000.


LINKS

Amiram Eldar, Table of n, a(n) for n = 1..73 (terms below 10^7)
Thøger Bang, Congruence properties of Tchebycheff polynomials, Mathematica Scandinavica, Vol. 2, No. 2 (1955), pp. 327333, alternative link,
Mohamed O. Rayes, Vilmar Trevisan, and Paul S. Wangy, Chebyshev Polynomials and Primality Tests, ICM Technical Report, Kent State University, Kent, Ohio, 1999. See page 8.


EXAMPLE

5719 is in the sequence since 5719 = 7 * 19 * 43 is composite and both T(5719 , 2)  2 and T(5719, 3)  3 are divisible by 5719.


MATHEMATICA

Select[Range[2*10^4], CompositeQ[#] && Divisible[ChebyshevT[#, 2]  2, #] && Divisible[ChebyshevT[#, 3]  3, #] &]


CROSSREFS

Intersection of A330206 and A330207.
Cf. A052155, A053120, A175530.
Sequence in context: A244163 A253423 A202376 * A252422 A183647 A028547
Adjacent sequences: A330205 A330206 A330207 * A330209 A330210 A330211


KEYWORD

nonn


AUTHOR

Amiram Eldar, Dec 05 2019


STATUS

approved



