login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A330208 Chebyshev pseudoprimes to both base 2 and base 3: composite numbers k such that T(k, 2) == 2 (mod k) and T(k, 3) == 3 (mod k), where T(k, x) is the k-th Chebyshev polynomial of the first kind. 3
5719, 6061, 11395, 15841, 17119, 18721, 31535, 67199, 73555, 84419, 117215, 133399, 133951, 174021, 181259, 194833, 226801, 273239, 362881, 469201, 516559, 522899, 534061, 588455, 665281, 700321, 721801, 778261, 903959, 1162349, 1561439, 1708901, 1755001, 1809697 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Bang proved that T(p, a) == a (mod p) for every a > 0 and every odd prime. Rayes et al. (1999) defined Chebyshev pseudoprimes to base a as composite numbers k such that T(k, a) == a (mod k). They noted that there are no Chebyshev pseudoprimes in both bases 2 and 3 below 2000.

LINKS

Amiram Eldar, Table of n, a(n) for n = 1..73 (terms below 10^7)

Th√łger Bang, Congruence properties of Tchebycheff polynomials, Mathematica Scandinavica, Vol. 2, No. 2 (1955), pp. 327-333, alternative link,

Mohamed O. Rayes, Vilmar Trevisan, and Paul S. Wangy, Chebyshev Polynomials and Primality Tests, ICM Technical Report, Kent State University, Kent, Ohio, 1999. See page 8.

EXAMPLE

5719 is in the sequence since 5719 = 7 * 19 * 43 is composite and both T(5719 , 2) - 2 and T(5719, 3) - 3 are divisible by 5719.

MATHEMATICA

Select[Range[2*10^4], CompositeQ[#] && Divisible[ChebyshevT[#, 2] - 2, #] && Divisible[ChebyshevT[#, 3] - 3, #] &]

CROSSREFS

Intersection of A330206 and A330207.

Cf. A052155, A053120, A175530.

Sequence in context: A244163 A253423 A202376 * A252422 A183647 A028547

Adjacent sequences:  A330205 A330206 A330207 * A330209 A330210 A330211

KEYWORD

nonn

AUTHOR

Amiram Eldar, Dec 05 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 22:15 EDT 2021. Contains 343992 sequences. (Running on oeis4.)