The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A330207 Chebyshev pseudoprimes to base 3: composite numbers k such that T(k, 3) == 3 (mod k), where T(k, x) is the k-th Chebyshev polynomial of the first kind. 3
 14, 35, 119, 169, 385, 434, 574, 741, 779, 899, 935, 961, 1105, 1106, 1121, 1189, 1443, 1479, 2001, 2419, 2555, 2915, 3059, 3107, 3383, 3605, 3689, 3741, 3781, 3827, 4199, 4795, 4879, 4901, 5719, 6061, 6083, 6215, 6265, 6441, 6479, 6601, 6895, 6929, 6931, 6965 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Bang proved that T(p, a) == a (mod p) for every a > 0 and every odd prime. Rayes et al. (1999) defined Chebyshev pseudoprimes to base a as composite numbers k such that T(k, a) == a (mod k). LINKS Amiram Eldar, Table of n, a(n) for n = 1..1000 Thøger Bang, Congruence properties of Tchebycheff polynomials, Mathematica Scandinavica, Vol. 2, No. 2 (1955), pp. 327-333, alternative link, David Pokrass Jacobs, Mohamed O. Rayes, and Vilmar Trevisan. Characterization of Chebyshev Numbers, Algebra and Discrete Mathematics, Vol. 2 (2008), pp. 65-82. Mohamed O. Rayes, Vilmar Trevisan, and Paul S. Wangy, Chebyshev Polynomials and Primality Tests, ICM Technical Report, Kent State University, Kent, Ohio, 1999. See page 8. Eric Weisstein's World of Mathematics, Chebyshev Polynomial of the First Kind. Wikipedia, Chebyshev polynomials. EXAMPLE 14 is in the sequence since it is composite and T(14, 3) = 26102926097 == 3 (mod 14). MATHEMATICA Select[Range[1000], CompositeQ[#] && Divisible[ChebyshevT[#, 3] - 3, #] &] CROSSREFS Cf. A053120, A175530, A330206, A330208. Sequence in context: A159242 A054309 A321135 * A104317 A178933 A203803 Adjacent sequences: A330204 A330205 A330206 * A330208 A330209 A330210 KEYWORD nonn AUTHOR Amiram Eldar, Dec 05 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 17 13:58 EDT 2024. Contains 371764 sequences. (Running on oeis4.)