login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330041
Expansion of e.g.f. exp(cosh(exp(x) - 1) - 1).
1
1, 0, 1, 3, 11, 55, 322, 2114, 15556, 127005, 1135374, 11011220, 115080825, 1288589757, 15379512670, 194796087841, 2608470709562, 36805935282625, 545626818921885, 8475730766054047, 137637670315066835, 2331584745107027528, 41122505417366272200
OFFSET
0,4
COMMENTS
Stirling transform of A005046 (with interpolated zeros).
Exponential transform of A024430.
LINKS
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A024430(k) * a(n-k).
MAPLE
g:= proc(n) option remember; `if`(n=0, 1, add(
binomial(2*n-1, 2*k-1) *g(n-k), k=1..n))
end:
b:= proc(n, m) option remember; `if`(n=0,
`if`(m::odd, 0, g(m/2)), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..22); # Alois P. Heinz, Jun 23 2023
MATHEMATICA
nmax = 22; CoefficientList[Series[Exp[Cosh[Exp[x] - 1] - 1], {x, 0, nmax}], x] Range[0, nmax]!
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 28 2019
STATUS
approved