login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330038
a(1) = 1, a(n) = [n/2] + a([n/2]) + a([(n+1)/2]) for n > 1, where [x] = floor(x).
1
1, 3, 5, 8, 10, 13, 16, 20, 22, 25, 28, 32, 35, 39, 43, 48, 50, 53, 56, 60, 63, 67, 71, 76, 79, 83, 87, 92, 96, 101, 106, 112, 114, 117, 120, 124, 127, 131, 135, 140, 143, 147, 151, 156, 160, 165, 170, 176, 179, 183, 187, 192, 196, 201, 206, 212, 216, 221, 226, 232
OFFSET
1,2
COMMENTS
a(n) is a sharp lower bound of the greatest whole number k such that there is a hypergraph (V, H) with |V| = k having no isolated vertices and containing no partitions of size greater than n (see Brian & Larson link, i.e. Definition 3.1, Lemma 4.2 and Proof of Theorem 4.6).
Partial sums of A063787. - Robert Israel, Nov 28 2019
LINKS
Will Brian and Paul B. Larson, Choosing between incompatible ideals, arXiv:1908.10914 [math.CO], 2019.
FORMULA
G.f. g(z) satisfies g(z) = z^2/((1+z)(1-z)^2) + (1+z)^2 g(z^2)/z. - Robert Israel, Nov 28 2019
From Kevin Ryde, Dec 16 2021: (Start)
a(n) = A000788(n-1) + n.
a(n) = (1/2) * Sum_{i=1..k} (e[i]+2*i) * 2^e[i], where binary expansion n = 2^e[1] + ... + 2^e[k] with descending exponents e[1] > e[2] > ... > e[k] (A272011).
(End)
MAPLE
f:= proc(n) option remember;
floor(n/2) + procname(floor(n/2)) + procname(floor((n+1)/2))
end proc:
f(1):= 1:
map(f, [$1..100]); # Robert Israel, Nov 28 2019
MATHEMATICA
a[1] = 1; a[n_] := a[n] = Floor[n/2] + a[Floor[n/2]] + a[Floor[(n + 1)/2]]; Array[a, 60] (* Amiram Eldar, Nov 28 2019 *)
PROG
(Magma) I:=[1]; [n le 1 select I[n] else Floor(n/2)+Self(Floor(n/2))+Self(Floor((n+1)/2)): n in [1..60]];
(PARI) a(n) = my(v=binary(n), t=#v); for(i=1, #v, if(v[i], v[i]=t++, t--); ); fromdigits(v, 2)>>1; \\ Kevin Ryde, Dec 16 2021
(Python) # Kevin Ryde's first formula
def a(n): return sum(bin(i).count("1") for i in range(n)) + n
print([a(n) for n in range(1, 61)]) # Michael S. Branicky, Dec 16 2021
(Python) # Kevin Ryde's second formula
def a(n):
b = list(map(int, bin(n)[2:]))
e = [i for i, bi in enumerate(b[::-1]) if bi][::-1]
return sum((ei + 2*i)*2**ei for i, ei in enumerate(e, 1))//2
print([a(n) for n in range(1, 61)]) # Michael S. Branicky, Dec 16 2021
CROSSREFS
Cf. A004526, A063787 (first differences), A000788, A272011.
Sequence in context: A060606 A350234 A050504 * A072150 A288575 A091309
KEYWORD
nonn
AUTHOR
Stefano Spezia, Nov 28 2019
STATUS
approved