Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Sep 08 2022 08:46:24
%S 1,3,5,8,10,13,16,20,22,25,28,32,35,39,43,48,50,53,56,60,63,67,71,76,
%T 79,83,87,92,96,101,106,112,114,117,120,124,127,131,135,140,143,147,
%U 151,156,160,165,170,176,179,183,187,192,196,201,206,212,216,221,226,232
%N a(1) = 1, a(n) = [n/2] + a([n/2]) + a([(n+1)/2]) for n > 1, where [x] = floor(x).
%C a(n) is a sharp lower bound of the greatest whole number k such that there is a hypergraph (V, H) with |V| = k having no isolated vertices and containing no partitions of size greater than n (see Brian & Larson link, i.e. Definition 3.1, Lemma 4.2 and Proof of Theorem 4.6).
%C Partial sums of A063787. - _Robert Israel_, Nov 28 2019
%H Will Brian and Paul B. Larson, <a href="https://arxiv.org/abs/1908.10914">Choosing between incompatible ideals</a>, arXiv:1908.10914 [math.CO], 2019.
%F G.f. g(z) satisfies g(z) = z^2/((1+z)(1-z)^2) + (1+z)^2 g(z^2)/z. - _Robert Israel_, Nov 28 2019
%F From _Kevin Ryde_, Dec 16 2021: (Start)
%F a(n) = A000788(n-1) + n.
%F a(n) = (1/2) * Sum_{i=1..k} (e[i]+2*i) * 2^e[i], where binary expansion n = 2^e[1] + ... + 2^e[k] with descending exponents e[1] > e[2] > ... > e[k] (A272011).
%F (End)
%p f:= proc(n) option remember;
%p floor(n/2) + procname(floor(n/2)) + procname(floor((n+1)/2))
%p end proc:
%p f(1):= 1:
%p map(f, [$1..100]); # _Robert Israel_, Nov 28 2019
%t a[1] = 1; a[n_] := a[n] = Floor[n/2] + a[Floor[n/2]] + a[Floor[(n + 1)/2]]; Array[a, 60] (* _Amiram Eldar_, Nov 28 2019 *)
%o (Magma) I:=[1]; [n le 1 select I[n] else Floor(n/2)+Self(Floor(n/2))+Self(Floor((n+1)/2)): n in [1..60]];
%o (PARI) a(n) = my(v=binary(n),t=#v); for(i=1,#v, if(v[i],v[i]=t++,t--);); fromdigits(v,2)>>1; \\ _Kevin Ryde_, Dec 16 2021
%o (Python) # Kevin Ryde's first formula
%o def a(n): return sum(bin(i).count("1") for i in range(n)) + n
%o print([a(n) for n in range(1, 61)]) # _Michael S. Branicky_, Dec 16 2021
%o (Python) # Kevin Ryde's second formula
%o def a(n):
%o b = list(map(int, bin(n)[2:]))
%o e = [i for i, bi in enumerate(b[::-1]) if bi][::-1]
%o return sum((ei + 2*i)*2**ei for i, ei in enumerate(e, 1))//2
%o print([a(n) for n in range(1, 61)]) # _Michael S. Branicky_, Dec 16 2021
%Y Cf. A004526, A063787 (first differences), A000788, A272011.
%Y Cf. A144935, A325831.
%K nonn
%O 1,2
%A _Stefano Spezia_, Nov 28 2019