login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261001
Numbers Q_n arising in computation of number of unordered unilabeled-bilabeled increasing trees.
2
1, 1, 3, 11, 55, 337, 2469, 21021, 204083, 2225455, 26933707, 358263257, 5195425937, 81580864601, 1379021735147, 24967860141019, 482069363651759, 9887244178274137, 214678344941548789, 4919465708844154821, 118650412290960022299, 3004435409327455196783
OFFSET
1,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..435 (terms 1..100 from Lars Blomberg)
Markus Kuba and Alois Panholzer, Combinatorial families of multilabelled increasing trees and hook-length formulas, arXiv:1411.4587 [math.CO], 2014.
FORMULA
Kuba et al. (2014) give a recurrence (see Th. 12).
E.g.f. A(x) satisfies: A'' = A' * (A' + A). - Michael Somos, Jan 17 2017
a(n) + a(n-1) = A261002(n). - Michael Somos, Jan 17 2017
a(n) ~ d^n * (n-1)!, where d = 1.20456083370247231... - Vaclav Kotesovec, Aug 17 2018
EXAMPLE
G.f. = x + x^2 + 3*x^3 + 11*x^4 + 55*x^5 + 337*x^6 + 2469*x^7 + ...
MATHEMATICA
terms = 22;
A[_] = 0;
Do[A[x_] = Integrate[1+Integrate[A'[x] (A'[x]+A[x]), x], x] + O[x]^(terms+1) // Normal, {terms+1}];
Rest[CoefficientList[A[x], x]] Range[terms]! (* Jean-François Alcover, Aug 16 2018, after Michael Somos *)
nmax = 25; Q[0] = 0; Q[1] = 1; Do[Q[m] = Sum[Binomial[m - 2, k]*(Q[k] + Q[k + 1])*Q[m - k - 1], {k, 0, m - 2}], {m, 2, nmax}]; Table[Q[n], {n, 1, nmax}] (* Vaclav Kotesovec, Aug 17 2018 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = O(x); for(k=1, n, A = intformal( 1 + intformal( A' * (A' + A)))); n! * polcoeff(A, n))}; /* Michael Somos, Jan 18 2017 */
CROSSREFS
Cf. A261002.
Sequence in context: A330041 A125696 A001776 * A207556 A180875 A136104
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 09 2015
EXTENSIONS
More terms from Lars Blomberg, Aug 20 2015
STATUS
approved