login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers Q_n arising in computation of number of unordered unilabeled-bilabeled increasing trees.
2

%I #31 Jul 31 2023 18:53:09

%S 1,1,3,11,55,337,2469,21021,204083,2225455,26933707,358263257,

%T 5195425937,81580864601,1379021735147,24967860141019,482069363651759,

%U 9887244178274137,214678344941548789,4919465708844154821,118650412290960022299,3004435409327455196783

%N Numbers Q_n arising in computation of number of unordered unilabeled-bilabeled increasing trees.

%H Vaclav Kotesovec, <a href="/A261001/b261001.txt">Table of n, a(n) for n = 1..435</a> (terms 1..100 from Lars Blomberg)

%H Markus Kuba and Alois Panholzer, <a href="http://arxiv.org/abs/1411.4587">Combinatorial families of multilabelled increasing trees and hook-length formulas</a>, arXiv:1411.4587 [math.CO], 2014.

%F Kuba et al. (2014) give a recurrence (see Th. 12).

%F E.g.f. A(x) satisfies: A'' = A' * (A' + A). - _Michael Somos_, Jan 17 2017

%F a(n) + a(n-1) = A261002(n). - _Michael Somos_, Jan 17 2017

%F a(n) ~ d^n * (n-1)!, where d = 1.20456083370247231... - _Vaclav Kotesovec_, Aug 17 2018

%e G.f. = x + x^2 + 3*x^3 + 11*x^4 + 55*x^5 + 337*x^6 + 2469*x^7 + ...

%t terms = 22;

%t A[_] = 0;

%t Do[A[x_] = Integrate[1+Integrate[A'[x] (A'[x]+A[x]), x], x] + O[x]^(terms+1) // Normal, {terms+1}];

%t Rest[CoefficientList[A[x], x]] Range[terms]! (* _Jean-François Alcover_, Aug 16 2018, after _Michael Somos_ *)

%t nmax = 25; Q[0] = 0; Q[1] = 1; Do[Q[m] = Sum[Binomial[m - 2, k]*(Q[k] + Q[k + 1])*Q[m - k - 1], {k, 0, m - 2}], {m, 2, nmax}]; Table[Q[n], {n, 1, nmax}] (* _Vaclav Kotesovec_, Aug 17 2018 *)

%o (PARI) {a(n) = my(A); if( n<0, 0, A = O(x); for(k=1, n, A = intformal( 1 + intformal( A' * (A' + A)))); n! * polcoeff(A, n))}; /* _Michael Somos_, Jan 18 2017 */

%Y Cf. A261002.

%K nonn

%O 1,3

%A _N. J. A. Sloane_, Aug 09 2015

%E More terms from _Lars Blomberg_, Aug 20 2015