login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261000
Unordered even-degree bilabeled increasing trees on 2n+1 nodes.
2
1, 3, 189, 68607, 82908441, 251944606683, 1618221395188629, 19514714407120367127, 405452689572115086887601, 13596354857453497541480646963, 699110237190377161907394095173869, 52888313306236766686682435536884784047
OFFSET
0,2
LINKS
Markus Kuba and Alois Panholzer, Combinatorial families of multilabelled increasing trees and hook-length formulas, arXiv:1411.4587 [math.CO], 2014. See p. 18
FORMULA
Kuba et al. (2014) gives a recurrence (see Theorem 7).
a(n) = A258659(2*n). - Michael Somos, Jun 17 2017
MAPLE
A261000aer := proc(n)
option remember;
local a, nloc, j, k, l;
if n = 1 then
1;
else
nloc := n-2 ;
a :=0 ;
for j from 0 to nloc-1 do
for k from 0 to nloc-1-j do
l := nloc-1-j-k ;
if l >= 0 then
a := a+procname(j+1)*procname(k+1)*procname(l+1) * (2*nloc+1)!/(2*j+1)!/(2*k+1)!/(2*l+1)! ;
end if;
end do:
end do:
%/2 ;
end if;
end proc:
A261000 := proc(n)
A261000aer(2*n+1) ;
end proc:
seq(A261000(n), n=0..15) ; # R. J. Mathar, Aug 18 2015
MATHEMATICA
terms = 12; nmax = 4 terms; A = 1; Do[A = Exp[Integrate[A^(1/2)*Integrate[1/A^(3/2), x], x] + O[x]^nmax], nmax]; A258659 = CoefficientList[A, x^2]*Range[0, nmax - 2, 2]!;
a[n_] := A258659[[2 n + 1]];
Table[a[n], {n, 0, terms - 1}] (* Jean-François Alcover, Nov 27 2017 *)
a[ n_] := If[ n<0, 0, (-1)^n * (4*n+1)! * SeriesCoefficient[ JacobiSD[x, 1/2], {x, 0, 4*n+1}]]; (* Michael Somos, Sep 03 2022 *)
a[ n_] := If[ n<0, 0, (-1)^n * (4*n+1)! * SeriesCoefficient[ x*Sqrt[1/x^2 / WeierstrassP[x, {1, 0}]], {x, 0, 4*n+1}]]; (* Michael Somos, Jul 02 2024 *)
a[ n_] := If[ n<0, 0, (-1)^n * (4*n+1)! * SeriesCoefficient[
InverseSeries[ Series[ x * Hypergeometric2F1[1/4, 1/2, 5/4, x^4/4], {x, 0, 4*n+1}]], {x, 0, 4*n+1}]]; (* Michael Somos, Jul 02 2024 *)
PROG
(PARI) {a(n) = if( n<0, 0, my(m = 4*n + 1); m! * polcoeff( serreverse( intformal( 1 / sqrt(1 + x^4/4 + x * O(x^m)) ) ), m))}; /* Michael Somos, Jun 17 2017 */
CROSSREFS
Closely related to A104203.
Cf. A258659.
Sequence in context: A157236 A058856 A158469 * A365447 A032594 A159658
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 09 2015
STATUS
approved