OFFSET
0,3
COMMENTS
Least k > 0 such that k^n/A061355(n) is an integer.
LINKS
Jinyuan Wang, Table of n, a(n) for n = 0..500
EXAMPLE
For n = 7, the denominator of Sum_{i=0..7} 1/i! is 252 = 2^2*3^2*7, so a(7) = 2*3*7 = 42.
PROG
(PARI) a(n) = factorback(factorint(denominator(sum(i=2, n, 1/i!)))[, 1]);
CROSSREFS
KEYWORD
nonn
AUTHOR
Jinyuan Wang, Mar 07 2020
STATUS
approved