login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330033
a(n) = Kronecker(n, 5) * (-1)^floor(n/5).
0
0, 1, -1, -1, 1, 0, -1, 1, 1, -1, 0, 1, -1, -1, 1, 0, -1, 1, 1, -1, 0, 1, -1, -1, 1, 0, -1, 1, 1, -1, 0, 1, -1, -1, 1, 0, -1, 1, 1, -1, 0, 1, -1, -1, 1, 0, -1, 1, 1, -1, 0, 1, -1, -1, 1, 0, -1, 1, 1, -1, 0, 1, -1, -1, 1, 0, -1, 1, 1, -1, 0, 1, -1, -1, 1, 0, -1
OFFSET
0,1
COMMENTS
This is a strong elliptic divisibility sequence t_n as given in [Kimberling, p. 16] where x = y = z = -1.
FORMULA
Euler transform of length 10 sequence [-1, -1, 0, 0, -1, 0, 0, 0, 0, 1].
G.f.: (x - 2*x^2 + x^3) / (1 - x + x^2 - x^3 + x^4) = x * (1 - x) * (1 - x^2) / (1 + x^5).
a(n) = -a(n+5) = -a(-n) = -(-1)^n*A244895(n) = A080891(n) * A330025(n), |a(n)| = A011558(n) for all n in Z.
a(n) = -A292301(n-1). a(5*n) = 0.
0 = a(n)*a(n-4) - a(n-1)*a(n-3) - a(n-2)*a(n-2) for all n in Z.
0 = a(n)*a(n+5) + a(n+1)*a(n+4) - a(n+2)*a(n+3) for all n in Z.
EXAMPLE
G.f. = x - x^2 - x^3 + x^4 - x^6 + x^7 + x^8 - x^9 + x^11 - x^12 + ...
MATHEMATICA
a[ n_] := {1, -1, -1, 1, 0}[[Mod[n, 5, 1]]] (-1)^Quotient[n, 5];
a[ n_] := JacobiSymbol[n, 5] (-1)^Quotient[n, 5];
PROG
(PARI) {a(n) = [0, 1, -1, -1, 1][n%5 + 1] * (-1)^(n\5)};
(PARI) {a(n) = kronecker(n, 5) * (-1)^(n\5)};
(Magma) [KroneckerSymbol(n, 5) * (-1)^Floor(n/5):n in [0..76]]; // Marius A. Burtea, Nov 28 2019
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Michael Somos, Nov 27 2019
STATUS
approved