login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330025
a(n) = (-1)^floor(n/5) * sign(mod(n, 5)).
3
0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1
OFFSET
0,1
COMMENTS
This is a strong elliptic divisibility sequence t_n as given in [Kimberling, p. 16] where x = 1, y = 1, z = 1. - Michael Somos, Mar 17 2020
FORMULA
Euler transform of length 10 sequence [1, 0, 0, -1, -1, 0, 0, 0, 0, 1].
G.f.: x * (1 + x) * (1 + x^2) / (1 + x^5).
a(n) = A099443(n-1). a(n) = A163812(n) except n=0.
a(n) = (-1)^floor(n/5) * A011558(n) for all n in Z.
0 = a(n)*a(n+4) - a(n+1)*a(n+3) + a(n+2)^2 = a(n)*a(n+5) - a(n+1)*a(n+4) + a(n+2)*a(n+3) for all n in Z. - Michael Somos, Mar 17 2020
EXAMPLE
G.f. = x + x^2 + x^3 + x^4 - x^6 - x^7 - x^8 - x^9 + x^11 + x^12 + ...
MATHEMATICA
a[ n_] := (-1)^Quotient[n, 5] Sign@Mod[n, 5];
PROG
(PARI) {a(n) = (-1)^(n\5) * sign(n%5)};
CROSSREFS
KEYWORD
sign,easy,changed
AUTHOR
Michael Somos, Nov 27 2019
STATUS
approved