login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329579
For every n >= 0, exactly nine sums are prime among a(n+i) + a(n+j), 0 <= i < j < 7; lexicographically earliest such sequence of distinct nonnegative numbers.
4
0, 1, 2, 3, 4, 5, 20, 9, 10, 8, 33, 11, 6, 50, 21, 17, 56, 12, 47, 14, 26, 7, 125, 15, 24, 83, 54, 66, 13, 35, 22, 18, 19, 48, 23, 31, 28, 30, 25, 16, 36, 42, 121, 29, 43, 37, 46, 70, 72, 60, 27, 79, 67, 40, 34, 39, 32, 69, 38, 41, 44, 45, 51, 58, 62, 86, 52, 53, 105, 171, 65, 74, 146, 68, 63, 123, 76
OFFSET
0,3
COMMENTS
That is, there are 9 primes, counted with multiplicity, among the 21 pairwise sums of any 7 consecutive terms.
Is this a permutation of the nonnegative integers?
If so, then the restriction to [1..oo) is a permutation of the positive integers, but maybe not the lexicographically earliest one with this property.
PROG
(PARI) A329579(n, show=0, o=0, N=9, M=6, p=[], U, u=o)={for(n=o, n-1, if(show>0, print1(o", "), show<0, listput(L, o)); U+=1<<(o-u); U>>=-u+u+=valuation(U+1, 2); p=concat(if(#p>=M, p[^1], p), o); my(c=N-sum(i=2, #p, sum(j=1, i-1, isprime(p[i]+p[j])))); if(#p<M&&sum(i=1, #p, isprime(p[i]+u))<=c, o=u)|| for(k=u, oo, bittest(U, k-u)|| sum(i=1, #p, isprime(p[i]+k))!=c||[o=k, break])); show&&print([u]); o} \\ optional args: show=1: print a(o..n-1), show=-1: append them on global list L, in both cases print [least unused number] at the end; o=1: start at a(1)=1; N, M: find N primes using M+1 terms
CROSSREFS
Cf. A329577 (7 primes using 7 consecutive terms), A329566 (6 primes using 6 consecutive terms), A329449 (4 primes using 4 consecutive terms).
Cf. A329425 (6 primes using 5 consecutive terms), A329455 (4 primes using 5 consecutive terms), A329455 (3 primes using 5 consecutive terms), A329453 (2 primes using 5 consecutive terms), A329452 (2 primes using 4 consecutive terms).
Cf. A329454 (3 primes using 4 consecutive terms), A329411 (2 primes using 3 consecutive terms), A329333 (1 odd prime using 3 terms), A329450 (0 primes using 3 terms).
Cf. A329405 ff: other variants defined for positive integers.
Sequence in context: A333993 A362064 A342617 * A024635 A217679 A248901
KEYWORD
nonn
AUTHOR
M. F. Hasler, Nov 17 2019
STATUS
approved