login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329576
For all n >= 1, exactly seven sums are prime among a(n+i) + a(n+j), 0 <= i < j < 6; lexicographically earliest such sequence of distinct positive numbers.
2
1, 2, 3, 4, 5, 8, 11, 26, 15, 9, 14, 32, 17, 20, 21, 27, 10, 16, 19, 7, 12, 13, 24, 6, 23, 35, 25, 37, 18, 36, 22, 31, 61, 28, 30, 39, 40, 43, 33, 64, 38, 45, 34, 29, 63, 50, 44, 53, 42, 59, 47, 54, 48, 41, 90, 49, 55, 52, 108, 58, 46, 51, 121, 73, 78, 76, 100, 79, 81, 151, 60, 67, 112, 70, 69
OFFSET
1,2
COMMENTS
That is, there are 7 primes, counted with multiplicity, among the 15 pairwise sums of any 6 consecutive terms.
Conjectured to be a permutation of the positive integers.
LINKS
M. F. Hasler, Prime sums from neighboring terms, OEIS wiki, Nov. 23, 2019
EXAMPLE
For n = 1, we must forbid the greedy choice for a(6) which would be 6, which leads to a dead end: there is no possibility to find a subsequent term that would give 7 prime sums together with {2, 3, 4, 5, 6}. If we take the next larger possibility, a(6) = 8, then it works for the next and all subsequent terms.
PROG
(PARI) {A329576(n, show=1, o=1, N=7, M=5, X=[[6, 6]], p=[], u=o, U)=for(n=o+1, n, show>0&& print1(o", "); show<0&& listput(L, o); U+=1<<(o-u); U>>=-u+u+=valuation(U+1, 2); p=concat(if(#p>=M, p[^1], p), o); my(c=N-sum(i=2, #p, sum(j=1, i-1, isprime(p[i]+p[j])))); if(#p<M&&sum(i=1, #p, isprime(p[i]+u))<=c, o=u)|| for(k=u, oo, bittest(U, k-u)|| sum(i=1, #p, isprime(p[i]+k))!=c|| setsearch(X, [n, k])|| [o=k, break])); show&&print([u]); o} \\ optional args: show=1: print a(o..n-1), show=-1: append them on global list L, in both cases print [least unused number] at the end. See the wiki page for more.
CROSSREFS
Cf. A329425 (6 primes using 5 consecutive terms), A329566 (6 primes using 6 consecutive terms).
Cf. A329449 (4 primes using 4 consecutive terms), A329456 (4 primes using 5 consecutive terms).
Cf. A329454 (3 primes using 4 consecutive terms), A329455 (3 primes using 5 consecutive terms).
Cf. A329411 (2 primes using 3 consecutive terms), A329452 (2 primes using 4 consecutive terms), A329453 (2 primes using 5 consecutive terms).
Cf. A329333 (1 (odd) prime using 3 terms), A128280 & A055265 (1 prime using 2 terms); A055266 & A253074 (0 primes using 2 terms), A329405 & A329450 (0 primes using 3 terms), A329406 - A329416, A329563 - A329581: other variants.
Sequence in context: A374782 A210671 A189761 * A101137 A256386 A053021
KEYWORD
nonn
AUTHOR
M. F. Hasler, Feb 09 2020
STATUS
approved