The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A328486 Dirichlet g.f.: zeta(s)^4 * (1 - 2^(-s))^2. 2
1, 2, 4, 3, 4, 8, 4, 4, 10, 8, 4, 12, 4, 8, 16, 5, 4, 20, 4, 12, 16, 8, 4, 16, 10, 8, 20, 12, 4, 32, 4, 6, 16, 8, 16, 30, 4, 8, 16, 16, 4, 32, 4, 12, 40, 8, 4, 20, 10, 20, 16, 12, 4, 40, 16, 16, 16, 8, 4, 48, 4, 8, 40, 7, 16, 32, 4, 12, 16, 32, 4, 40, 4, 8, 40, 12, 16, 32, 4, 20 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Dirichlet convolution of A001227 with itself.
LINKS
FORMULA
a(n) = Sum_{d|n} A001227(d) * A001227(n/d).
Sum_{k=1..n} a(k) ~ n * (log(n)^3/24 + (g/2 + log(2)/4 - 1/8)* log(n)^2 + (1/4 - g + 3*g^2/2 - log(2)/2 + 2*g*log(2) - sg1)* log(n) - 1/4 + (1 - 2*log(2))*g + (3*log(2) - 3/2)*g^2 + g^3 + log(2)/2 - log(2)^3/6 + (1 - 3*g - 2*log(2))* sg1 + sg2/2), where g is the Euler-Mascheroni constant A001620 and sg1, sg2 are the Stieltjes constants, see A082633 and A086279. - Vaclav Kotesovec, Oct 17 2019
Multiplicative with a(2^e) = e + 1, and a(p^e) = (e + 1)*(e + 2)*(e + 3)/6 for odd primes p. - Amiram Eldar, Nov 30 2020
MAPLE
with(numtheory):
b:= proc(n) option remember; tau(2*n)-tau(n) end:
a:= n-> add(b(d)*b(n/d), d=divisors(n)):
seq(a(n), n=1..100); # Alois P. Heinz, Oct 16 2019
MATHEMATICA
nmax = 80; A001227 = Table[DivisorSum[n, Mod[#, 2] &], {n, 1, nmax}]; Table[DivisorSum[n, A001227[[#]] A001227[[n/#]] &], {n, 1, nmax}]
f[2, e_] := e + 1; f[p_, e_] := (e + 1)*(e + 2)*(e + 3)/6; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Nov 30 2020 *)
CROSSREFS
Sequence in context: A229047 A335841 A133702 * A349606 A332224 A080001
KEYWORD
nonn,mult
AUTHOR
Ilya Gutkovskiy, Oct 16 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 05:47 EDT 2024. Contains 372902 sequences. (Running on oeis4.)