login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328487
Dirichlet g.f.: zeta(s)^2 * zeta(s-1)^2 * (1 - 2^(1 - s))^2.
2
1, 2, 8, 3, 12, 16, 16, 4, 42, 24, 24, 24, 28, 32, 96, 5, 36, 84, 40, 36, 128, 48, 48, 32, 98, 56, 184, 48, 60, 192, 64, 6, 192, 72, 192, 126, 76, 80, 224, 48, 84, 256, 88, 72, 504, 96, 96, 40, 178, 196, 288, 84, 108, 368, 288, 64, 320, 120, 120, 288, 124, 128, 672, 7, 336
OFFSET
1,2
COMMENTS
Dirichlet convolution of A000593 with itself.
LINKS
FORMULA
a(n) = Sum_{d|n} A000593(d) * A000593(n/d).
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 * (Pi^2 * (log(n)/2 + log(2) + gamma - 1/4) + 6*zeta'(2)) / 144, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 17 2019
Multiplicative with a(2^e) = e+1, and a(p^e) = ((e+1)*p^(e+3) - (e+3)*(p^(e+2) - p + 1) + 2)/(p-1)^3 for an odd prime p. - Amiram Eldar, Sep 15 2023
MATHEMATICA
nmax = 65; A000593 = Table[DivisorSum[n, Mod[#, 2] # &], {n, 1, nmax}]; Table[DivisorSum[n, A000593[[#]] A000593[[n/#]] &], {n, 1, nmax}]
f[p_, e_] := ((e+1)*p^(e+3) - (e+3)*(p^(e+2) - p + 1) + 2)/(p-1)^3; f[2, e_] := e+1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 15 2023 *)
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Ilya Gutkovskiy, Oct 16 2019
STATUS
approved