|
|
A328287
|
|
Number of multiples of n which have only distinct and nonzero digits in base 10.
|
|
4
|
|
|
0, 986409, 438404, 572175, 219202, 109601, 255752, 140515, 109601, 432645, 0, 90212, 127163, 75768, 62436, 65027, 56104, 57930, 194244, 51869, 0, 81493, 40572, 42969, 63654, 27400, 33587, 145926, 31217, 34146, 0, 31827, 27926, 51090, 25772, 15702, 97114, 26330, 23106, 43929, 0, 23983, 36409
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
This is column 0 of A328288, extension of A328277.
No term can exceed a(1), cf. example. The sequence is finite in the sense that a(n) = 0 for n > 987654321, since one cannot have more than 9 distinct nonzero digits.
See A328290 for generalization to other bases.
|
|
LINKS
|
Table of n, a(n) for n=0..42.
Rémy Sigrist, PARI program for A328287
|
|
FORMULA
|
a(n) = 0 whenever n == 0 (mod 10) or n > 987654321.
|
|
EXAMPLE
|
For n = 1, this is simply the number of numbers with only distinct and nonzero digits. All other terms are less than a(1), namely, the size of the subset of these numbers which are multiples of n.
|
|
PROG
|
(PARI) A328287(n, B=10, S)={for(L=1, B-1, my(T=vectorv(L, k, B^(k-1))); forperm(L, p, u=vecextract(T, p); forvec(d=vector(L, i, [1, B-1]), d*u%n||S++, 2))); S} \\ 2nd optional argument allows to specify a base different from 10
(PARI) See Links section
|
|
CROSSREFS
|
Cf. A328288, A328277.
This is row 10 of A328290.
Sequence in context: A206185 A205367 A328288 * A083395 A106782 A154674
Adjacent sequences: A328284 A328285 A328286 * A328288 A328289 A328290
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
M. F. Hasler, Oct 10 2019
|
|
STATUS
|
approved
|
|
|
|