login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328286
Expansion of e.g.f. -log(1 - x - x^2/2).
0
1, 2, 5, 21, 114, 780, 6390, 61110, 667800, 8210160, 112152600, 1685237400, 27624920400, 490572482400, 9381882510000, 192238348302000, 4201639474032000, 97572286427616000, 2399151995223984000, 62268748888378032000, 1701213856860117600000
OFFSET
1,2
FORMULA
a(n) = (n - 1)! * ((1 - sqrt(3))^n + (1 + sqrt(3))^n) / 2^n.
D-finite with recurrence +2*a(n) +2*(-n+1)*a(n-1) -(n-1)*(n-2)*a(n-2)=0. - R. J. Mathar, Aug 20 2021
MAPLE
b:= proc(n) b(n):= n! * (<<1|1>, <1/2|0>>^n)[1, 1] end:
a:= proc(n) option remember; `if`(n=0, 0, b(n)-add(
binomial(n, j)*j*b(n-j)*a(j), j=1..n-1)/n)
end:
seq(a(n), n=1..25); # Alois P. Heinz, Oct 11 2019
MATHEMATICA
nmax = 21; CoefficientList[Series[-Log[1 - x - x^2/2], {x, 0, nmax}], x] Range[0, nmax]! // Rest
FullSimplify[Table[(n - 1)! ((1 - Sqrt[3])^n + (1 + Sqrt[3])^n)/2^n, {n, 1, 21}]]
PROG
(PARI) my(x='x+O('x^25)); Vec(serlaplace(-log(1 - x - x^2/2))) \\ Michel Marcus, Oct 11 2019
CROSSREFS
Cf. A009014, A039647, A080040, A080599 (exponential transform).
Sequence in context: A020129 A129582 A152576 * A078480 A212922 A243272
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 11 2019
STATUS
approved