login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328269
Number of walks on cubic lattice starting at (0,0,0), ending at (0,n,n), remaining in the first (nonnegative) octant and using steps (0,0,1), (0,1,0), (1,0,0), (-1,1,1), (1,-1,1), and (1,1,-1).
4
1, 3, 26, 343, 5594, 103730, 2094028, 44889351, 1006126370, 23337166962, 556199376622, 13550764116530, 336190200180652, 8468872074477060, 216120719672921820, 5577150906683145103, 145324963753397617230, 3819107708757101038562, 101122686499165125017886
OFFSET
0,2
LINKS
Wikipedia, Lattice path
FORMULA
a(n) = A328300(2n,n).
a(n) is odd <=> n in { A000225 }.
a(n) ~ c * 2^(3*n) * (2 + sqrt(3))^n / n^2, where c =
0.081957778985952080274457799679795068000445171394180053136120884510526907545... - Vaclav Kotesovec, May 10 2020
EXAMPLE
a(1) = 3: [(0,0,0),(1,0,0),(0,1,1)], [(0,0,0),(0,1,0),(0,1,1)], [(0,0,0),(0,0,1),(0,1,1)].
a(2) = 26: [(0,0,0),(1,0,0),(2,0,0),(1,1,1),(0,2,2)], [(0,0,0),(1,0,0),(1,1,0),(1,1,1),(0,2,2)], ..., [(0,0,0),(0,0,1),(0,1,1),(0,1,2),(0,2,2)], [(0,0,0),(0,0,1),(0,0,2),(0,1,2),(0,2,2)].
MAPLE
b:= proc(l) option remember; `if`(l[-1]=0, 1, (r-> add(
add(add(`if`(i+j+k=1, (h-> `if`(h[1]<0, 0, b(h)))(
sort(l-[i, j, k])), 0), k=r), j=r), i=r))([$-1..1]))
end:
a:= n-> b([0, n$2]):
seq(a(n), n=0..23);
MATHEMATICA
b[l_] := b[l] = If[Last[l] == 0, 1, Sum[If[i + j + k == 1, Function[h, If[h[[1]] < 0, 0, b[h]]][Sort[l - {i, j, k}]], 0], {i, {-1, 0, 1}}, {j, {-1, 0, 1}}, {k, {-1, 0, 1}}]];
a[n_] := b[{0, n, n}];
a /@ Range[0, 23] (* Jean-François Alcover, May 12 2020, after Maple *)
CROSSREFS
Bisection (even part) of A328280.
Sequence in context: A119293 A339298 A366315 * A136046 A206404 A373425
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Oct 10 2019
STATUS
approved