login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A328270 Total number of nodes in all walks on cubic lattice starting at (0,0,0), ending at (0,n,n), remaining in the first (nonnegative) octant and using steps (0,0,1), (0,1,0), (1,0,0), (-1,1,1), (1,-1,1), and (1,1,-1). 1
1, 9, 130, 2401, 50346, 1141030, 27222364, 673340265, 17104148290, 443406172278, 11680186909062, 311667574680190, 8404755004516300, 228659546010880620, 6267500870514732780, 172891678107177498193, 4795723803862121368590, 133668769806498536349670 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
Wikipedia, Lattice path
FORMULA
a(n) = (2n+1) * A328269(n).
a(n) is odd <=> n in { A000225 }.
EXAMPLE
a(1) = 9: nodes in [(0,0,0),(1,0,0),(0,1,1)], [(0,0,0),(0,1,0),(0,1,1)], [(0,0,0),(0,0,1),(0,1,1)].
MAPLE
b:= proc(l) option remember; `if`(l[-1]=0, 1, (r-> add(
add(add(`if`(i+j+k=1, (h-> `if`(h[1]<0, 0, b(h)))(
sort(l-[i, j, k])), 0), k=r), j=r), i=r))([$-1..1]))
end:
a:= n-> (2*n+1)*b([0, n$2]):
seq(a(n), n=0..23);
MATHEMATICA
b[l_] := b[l] = If[Last[l] == 0, 1, Function[r, Sum[If[i + j + k == 1, Function[h, If[h[[1]] < 0, 0, b[h]]][Sort[l - {i, j, k}]], 0], {i, r}, {j, r}, {k, r}]][{-1, 0, 1}]];
a[n_] := (2n+1) b[{0, n, n}];
a /@ Range[0, 23] (* Jean-François Alcover, May 13 2020, after Maple *)
CROSSREFS
Sequence in context: A287690 A075762 A349155 * A060944 A299596 A200407
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Oct 10 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 26 04:47 EST 2024. Contains 370335 sequences. (Running on oeis4.)