login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of walks on cubic lattice starting at (0,0,0), ending at (0,n,n), remaining in the first (nonnegative) octant and using steps (0,0,1), (0,1,0), (1,0,0), (-1,1,1), (1,-1,1), and (1,1,-1).
4

%I #26 Oct 15 2020 12:37:33

%S 1,3,26,343,5594,103730,2094028,44889351,1006126370,23337166962,

%T 556199376622,13550764116530,336190200180652,8468872074477060,

%U 216120719672921820,5577150906683145103,145324963753397617230,3819107708757101038562,101122686499165125017886

%N Number of walks on cubic lattice starting at (0,0,0), ending at (0,n,n), remaining in the first (nonnegative) octant and using steps (0,0,1), (0,1,0), (1,0,0), (-1,1,1), (1,-1,1), and (1,1,-1).

%H Alois P. Heinz, <a href="/A328269/b328269.txt">Table of n, a(n) for n = 0..639</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path">Lattice path</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Self-avoiding_walk">Self-avoiding walk</a>

%F a(n) = A328300(2n,n).

%F a(n) is odd <=> n in { A000225 }.

%F a(n) ~ c * 2^(3*n) * (2 + sqrt(3))^n / n^2, where c =

%F 0.081957778985952080274457799679795068000445171394180053136120884510526907545... - _Vaclav Kotesovec_, May 10 2020

%e a(1) = 3: [(0,0,0),(1,0,0),(0,1,1)], [(0,0,0),(0,1,0),(0,1,1)], [(0,0,0),(0,0,1),(0,1,1)].

%e a(2) = 26: [(0,0,0),(1,0,0),(2,0,0),(1,1,1),(0,2,2)], [(0,0,0),(1,0,0),(1,1,0),(1,1,1),(0,2,2)], ..., [(0,0,0),(0,0,1),(0,1,1),(0,1,2),(0,2,2)], [(0,0,0),(0,0,1),(0,0,2),(0,1,2),(0,2,2)].

%p b:= proc(l) option remember; `if`(l[-1]=0, 1, (r-> add(

%p add(add(`if`(i+j+k=1, (h-> `if`(h[1]<0, 0, b(h)))(

%p sort(l-[i, j, k])), 0), k=r), j=r), i=r))([$-1..1]))

%p end:

%p a:= n-> b([0, n$2]):

%p seq(a(n), n=0..23);

%t b[l_] := b[l] = If[Last[l] == 0, 1, Sum[If[i + j + k == 1, Function[h, If[h[[1]] < 0, 0, b[h]]][Sort[l - {i, j, k}]], 0], {i, {-1, 0, 1}}, {j, {-1, 0, 1}}, {k, {-1, 0, 1}}]];

%t a[n_] := b[{0, n, n}];

%t a /@ Range[0, 23] (* _Jean-François Alcover_, May 12 2020, after Maple *)

%Y Bisection (even part) of A328280.

%Y Cf. A000225, A000984, A277262, A328270, A328300.

%K nonn,walk

%O 0,2

%A _Alois P. Heinz_, Oct 10 2019