login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327655
Intersection of A327653 and A327654.
4
119, 649, 1189, 4187, 12871, 14041, 16109, 23479, 24769, 28421, 31631, 34997, 38503, 41441, 48577, 50545, 56279, 58081, 59081, 61447, 75077, 91187, 95761, 96139, 116821, 127937, 146329, 148943, 150281, 157693, 170039, 180517, 188501, 207761, 208349, 244649, 281017, 311579, 316409
OFFSET
1,1
COMMENTS
Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n) = m*x(n-1) + x(n-2) for k >= 2. For primes p, we have (a) p divides x(p-((m^2+4)/p); (b) x(p) == ((m^2+4)/p) (mod p), where (D/p) is the Kronecker symbol. This sequence gives composite numbers k such that gcd(k, m^2+4) = 1 and that conditions similar to (a) and (b) hold for k simultaneously, where m = 2.
If k is not required to be coprime to m^2 + 4 (= 13), then there are 322 such k <= 10^5 and 1381 such k <= 10^6, while there are only 24 terms <= 10^5 and 72 terms <= 10^6 in this sequence.
EXAMPLE
119 divides A006190(120) as well as A006190(119) + 1, so 119 is a term.
PROG
(PARI) seqmod(n, m)=((Mod([3, 1; 1, 0], m))^n)[1, 2]
isA327655(n)=!isprime(n) && seqmod(n, n)==kronecker(13, n) && !seqmod(n-kronecker(13, n), n) && gcd(n, 13)==1 && n>1
CROSSREFS
m m=1 m=2 m=3
k | x(k-Kronecker(m^2+4,k))* A081264 U A141137 A327651 A327653
k | x(k)-Kronecker(m^2+4,k) A049062 A099011 A327654
both A212424 A327652 this seq
* k is composite and coprime to m^2 + 4.
Cf. A006190, A011583 ({Kronecker(13,n)}).
Sequence in context: A256907 A049226 A106572 * A326795 A351906 A367723
KEYWORD
nonn
AUTHOR
Jianing Song, Sep 20 2019
STATUS
approved