login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327450
Number of ways the first n squares can be partitioned into three sets with equal sums.
4
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 137, 211, 0, 0, 0, 3035, 0, 0, 0, 120465, 259383, 0, 0, 0, 12328889, 0, 0, 0, 673380980, 1659966694, 0, 0, 0, 69819104134, 0, 0, 0, 3761284888715, 9660240745536, 0, 0, 0, 537238185892321, 0, 0, 0, 29922345673502904
OFFSET
1,17
REFERENCES
Keith F. Lynch, Posting to Math Fun Mailing List, Sep 19 2019.
LINKS
FORMULA
a(n) > 0 => n in { A140282 }. - Alois P. Heinz, Sep 29 2019
EXAMPLE
The unique smallest solution (for n = 13) is 1 + 9 + 25 + 36 + 81 + 121 = 16 + 49 + 64 + 144 = 4 + 100 + 169.
MAPLE
s:= proc(n) option remember; `if`(n<2, 0, n^2+s(n-1)) end:
b:= proc(n, x, y) option remember; `if`(n=1, 1, (p-> (l->
add(`if`(p>l[i], 0, b(n-1, sort(subsop(i=l[i]-p, l))
[1..2][])), i=1..3))([x, y, s(n)-x-y]))(n^2))
end:
a:= n-> `if`(irem(1+s(n), 3, 'q')=0, b(n, q-1, q)/2, 0):
seq(a(n), n=1..27); # Alois P. Heinz, Sep 29 2019
MATHEMATICA
s[n_] := s[n] = If[n < 2, 0, n^2 + s[n - 1]];
b[n_, x_, y_] := b[n, x, y] = Module[{p, l}, If[n == 1, 1, p = n^2; l = {x, y, s[n] - x - y}; Sum[If[p > l[[i]], 0, b[n - 1, Sequence @@ Sort[ ReplacePart[l, i -> l[[i]] - p]][[1 ;; 2]]]], {i, 1, 3}]]];
a[n_] := Module[{q, r}, {q, r} = QuotientRemainder[1 + s[n], 3]; If[r == 0, b[n, q - 1, q]/2, 0]];
Array[a, 30] (* Jean-François Alcover, Dec 04 2020, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 20 2019
EXTENSIONS
a(28)-a(45) from Alois P. Heinz, Sep 29 2019
a(46)-a(53) from Alois P. Heinz, Oct 05 2019
STATUS
approved