OFFSET
1,1
COMMENTS
Note that 61471 and 61483 are consecutive primes; 65537 = 2^16+1 .The lowest indexed equidistance up to n=500000, is b=4 for n=46, p(46) = 199.
EXAMPLE
199^2 + 229^2 + 251^2 + 271^2 = 478^2 and 239 is prime; b = 4.
137^2 + 223^2 + 307^2 + 397^2 = 566^2 and 283 is prime; b = 15.
223^2 + 307^2 + 397^2 + 487^2 = 734^2 and 367 is prime; b = 15.
11^2 + 59^2 + 109^2 + 179^2 = 218^2 and 109 is prime; was not included because p(5) = 11 and b = 12 > 5.
PROG
(PARI) for(n=1, 10000, for(b=1, n, a=(prime(n))^2+(prime(n+b))^2+(prime(n+2*b))^2+ (prime(n+3*b))^2; if(issquare(a)&isprime(sqrtint(a)/2), print1(prime(n)", "))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Robin Garcia, Jul 09 2012
STATUS
approved