login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A327324
Palindromes whose number and sum of divisors are both also palindromic.
0
1, 2, 3, 4, 5, 7, 333, 17571, 1757571, 1787871, 5136315, 518686815, 541626145, 17575757571, 5136813186315, 5136868686315, 5806270726085, 172757272757271, 513636363636315, 17275787578757271, 17578787578787571, 17878787578787871, 51363636363636315
OFFSET
1,2
COMMENTS
Numbers m such that m, A000005(m) = tau(m) and A000203(m) = sigma(m) are all in A002113.
Corresponding values of tau(a(n)): 1, 2, 2, 3, 2, 2, 6, 4, 4, 4, 8, 8, 8, 4, 8, 8, 8, 4, 8, ...
Corresponding values of sigma(a(n)): 1, 3, 4, 7, 6, 8, 494, 23432, 2343432, 2383832, ...
Intersection of A028986 and A324988.
EXAMPLE
tau(333) = A000005(333) = 6; sigma(333) = A000203(333) = 494.
MATHEMATICA
Select[Range[2*10^6], PalindromeQ[#] && PalindromeQ[DivisorSigma[0, #]] && PalindromeQ[DivisorSigma[1, #]] &] (* Amiram Eldar, Aug 31 2019 *)
PROG
(Magma) [m: m in [1..1000000] | Intseq(m, 10) eq Reverse(Intseq(m, 10)) and Intseq(NumberOfDivisors(m), 10) eq Reverse(Intseq(NumberOfDivisors(m), 10)) and Intseq(&+[d: d in Divisors(m)], 10) eq Reverse(Intseq(&+[d: d in Divisors(m)], 10))]
(PARI) ispal(n) = my(d=digits(n)); d == Vecrev(d);
isok(n) = ispal(n) && ispal(numdiv(n)) && ispal(sigma(n)); \\ Michel Marcus, Sep 02 2019
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Jaroslav Krizek, Aug 30 2019
EXTENSIONS
a(20)-a(23) with the help of Daniel Suteu
STATUS
approved