login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326796
E.g.f. C(x) = C(x,x), where C(x,y) is the e.g.f. of triangle A326799.
3
2, -4, -154, 1336, 139402, -2516812, -531298962, 16291452784, 5792759106578, -269619415772564, -144868583759257994, 9514326895639572136, 7196653593954009006746, -633707576374342516652764, -641861736344903371972973954, 72970336686693711886017561312, 95350631737851404765088770262050, -13593601759174079774108596113815332, -22265118012504823914985759717325911674
OFFSET
2,1
COMMENTS
Equals the row sums of triangle A326799.
FORMULA
E.g.f. C(x) and related functions A(x) and B(x), defined by A326794 and A326795, respectively, satisfy:
(1) A(x)^2 + B(x)^2 + C(x)^2 = 1,
(2) A(x)*A'(x) + B(x)*B'(x) + C(x)*C'(x) = 0.
EXAMPLE
E.g.f.: C(x) = 2*x^2/2! - 4*x^4/4! - 154*x^6/6! + 1336*x^8/8! + 139402*x^10/10! - 2516812*x^12/12! - 531298962*x^14/14! + 16291452784*x^16/16! + 5792759106578*x^18/18! - 269619415772564*x^20/20! + ...
PROG
(PARI) {a(n, k) = my(Ax=x, Bx=1, Cx=x, Ay=y, By=y, Cy=1);
for(i=0, 2*n+1,
Ax = 0 + intformal( Bx*Cy - Cx*By, x) + O(x^(2*n+2));
Bx = 1 + intformal( Cx*Ay - Ax*Cy, x) + O(x^(2*n+2));
Cx = 0 + intformal( Ax*By - Bx*Ay, x) + O(x^(2*n+2));
Ay = 0 + intformal( By*Cx - Cy*Bx, y) + O(y^(2*n+2));
By = 0 + intformal( Cy*Ax - Ay*Cx, y) + O(y^(2*n+2));
Cy = 1 + intformal( Ay*Bx - By*Ax, y) + O(y^(2*n+2));
);
sum(k=0, n, (2*n+2)! * polcoeff( polcoeff(Cx, 2*n-2*k+1, x), 2*k+1, y))}
for(n=0, 20, print1( a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Aug 05 2019
STATUS
approved