login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A192063 E.g.f. 1-sqrt(cos(2*x)) (even part). 0
0, 2, 4, 152, 8944, 933152, 151557184, 35402298752, 11250504212224, 4668840721981952, 2451963626804184064, 1589715293557268682752, 1247113599659216858312704, 1164315843409068590677041152, 127574292191869924893941171814 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..14.

FORMULA

a(n) = sum((k=1..2*n, binomial(2*k-2,k-1)*2^(2*n-2*k+2)*sum(j=1..k, ((sum(i=0..(j-1)/2, (j-2*i)^(2*n)*binomial(j,i)))*binomial(k,j)*(-1)^(n-j))/2^j))/k).

a(n) = 2*sum(k=1..2*n, C(k-1)*sum(i=0..k-1, (i-k)^(2*n)*binomial(2*k,i)*(-1)^(n+k-i))*2^(2*n-3*k+1)), where C(k) = A000108(k). - Vladimir Kruchinin, Oct 05 2012

G.f.: 1 - 1/U(0) where U(k)= 1 - (2*k-1)*(2*k+2)*x/U(k+1); (continued fraction, due Stiltjes T.J, 1-step). - Sergei N. Gladkovskii, Nov 09 2012

G.f.: T(0)+1, where T(k) = -1 + x*(2*k-1)*(2*k+2)/( x*(2*k-1)*(2*k+2) + 1/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 25 2013

a(n) ~ (2*n)! * 2^(4*n-2)/(n^(3/2)*Pi^(2*n)). - Vaclav Kotesovec, Nov 07 2013

MATHEMATICA

Table[n!*SeriesCoefficient[1-Sqrt[Cos[2*x]], {x, 0, n}], {n, 0, 40, 2}] (* Vaclav Kotesovec, Nov 07 2013 *)

PROG

(Maxima)

a(n):=sum((binomial(2*k-2, k-1)*2^(2*n-2*k+2)*sum(((sum((j-2*i)^(2*n) *binomial(j, i), i, 0, (j-1)/2))*binomial(k, j)*(-1)^(n-j))/2^j, j, 1, k))/k, k, 1, 2*n);

CROSSREFS

Sequence in context: A018517 A018539 A018544 * A018558 A296463 A132528

Adjacent sequences:  A192060 A192061 A192062 * A192064 A192065 A192066

KEYWORD

nonn

AUTHOR

Vladimir Kruchinin, Jun 22 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 13:48 EST 2018. Contains 318063 sequences. (Running on oeis4.)