login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192063
E.g.f. 1-sqrt(cos(2*x)) (even part).
0
0, 2, 4, 152, 8944, 933152, 151557184, 35402298752, 11250504212224, 4668840721981952, 2451963626804184064, 1589715293557268682752, 1247113599659216858312704, 1164315843409068590677041152, 1275742921918699248939411718144, 1621172561651122048792832473137152
OFFSET
0,2
FORMULA
a(n) = sum((k=1..2*n, binomial(2*k-2,k-1)*2^(2*n-2*k+2)*sum(j=1..k, ((sum(i=0..(j-1)/2, (j-2*i)^(2*n)*binomial(j,i)))*binomial(k,j)*(-1)^(n-j))/2^j))/k).
a(n) = 2*sum(k=1..2*n, C(k-1)*sum(i=0..k-1, (i-k)^(2*n)*binomial(2*k,i)*(-1)^(n+k-i))*2^(2*n-3*k+1)), where C(k) = A000108(k). - Vladimir Kruchinin, Oct 05 2012
G.f.: 1 - 1/U(0) where U(k)= 1 - (2*k-1)*(2*k+2)*x/U(k+1); (continued fraction, due to T. J. Stieltjes). - Sergei N. Gladkovskii, Nov 09 2012
G.f.: T(0)+1, where T(k) = -1 + x*(2*k-1)*(2*k+2)/( x*(2*k-1)*(2*k+2) + 1/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 25 2013
a(n) ~ (2*n)! * 2^(4*n-2)/(n^(3/2)*Pi^(2*n)). - Vaclav Kotesovec, Nov 07 2013
MATHEMATICA
Table[n!*SeriesCoefficient[1-Sqrt[Cos[2*x]], {x, 0, n}], {n, 0, 40, 2}] (* Vaclav Kotesovec, Nov 07 2013 *)
With[{nn=40}, Take[CoefficientList[Series[1-Sqrt[Cos[2x]], {x, 0, nn}], x] Range[0, nn]!, {1, -1, 2}]] (* Harvey P. Dale, Nov 01 2021 *)
PROG
(Maxima)
a(n):=sum((binomial(2*k-2, k-1)*2^(2*n-2*k+2)*sum(((sum((j-2*i)^(2*n) *binomial(j, i), i, 0, (j-1)/2))*binomial(k, j)*(-1)^(n-j))/2^j, j, 1, k))/k, k, 1, 2*n);
CROSSREFS
Sequence in context: A018517 A018539 A018544 * A326796 A018558 A296463
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Jun 22 2011
EXTENSIONS
Corrected and extended by Harvey P. Dale, Nov 01 2021
STATUS
approved