The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A192063 E.g.f. 1-sqrt(cos(2*x)) (even part). 0
 0, 2, 4, 152, 8944, 933152, 151557184, 35402298752, 11250504212224, 4668840721981952, 2451963626804184064, 1589715293557268682752, 1247113599659216858312704, 1164315843409068590677041152, 1275742921918699248939411718144, 1621172561651122048792832473137152 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Table of n, a(n) for n=0..15. FORMULA a(n) = sum((k=1..2*n, binomial(2*k-2,k-1)*2^(2*n-2*k+2)*sum(j=1..k, ((sum(i=0..(j-1)/2, (j-2*i)^(2*n)*binomial(j,i)))*binomial(k,j)*(-1)^(n-j))/2^j))/k). a(n) = 2*sum(k=1..2*n, C(k-1)*sum(i=0..k-1, (i-k)^(2*n)*binomial(2*k,i)*(-1)^(n+k-i))*2^(2*n-3*k+1)), where C(k) = A000108(k). - Vladimir Kruchinin, Oct 05 2012 G.f.: 1 - 1/U(0) where U(k)= 1 - (2*k-1)*(2*k+2)*x/U(k+1); (continued fraction, due to T. J. Stieltjes). - Sergei N. Gladkovskii, Nov 09 2012 G.f.: T(0)+1, where T(k) = -1 + x*(2*k-1)*(2*k+2)/( x*(2*k-1)*(2*k+2) + 1/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 25 2013 a(n) ~ (2*n)! * 2^(4*n-2)/(n^(3/2)*Pi^(2*n)). - Vaclav Kotesovec, Nov 07 2013 MATHEMATICA Table[n!*SeriesCoefficient[1-Sqrt[Cos[2*x]], {x, 0, n}], {n, 0, 40, 2}] (* Vaclav Kotesovec, Nov 07 2013 *) With[{nn=40}, Take[CoefficientList[Series[1-Sqrt[Cos[2x]], {x, 0, nn}], x] Range[0, nn]!, {1, -1, 2}]] (* Harvey P. Dale, Nov 01 2021 *) PROG (Maxima) a(n):=sum((binomial(2*k-2, k-1)*2^(2*n-2*k+2)*sum(((sum((j-2*i)^(2*n) *binomial(j, i), i, 0, (j-1)/2))*binomial(k, j)*(-1)^(n-j))/2^j, j, 1, k))/k, k, 1, 2*n); CROSSREFS Sequence in context: A018517 A018539 A018544 * A326796 A018558 A296463 Adjacent sequences: A192060 A192061 A192062 * A192064 A192065 A192066 KEYWORD nonn AUTHOR Vladimir Kruchinin, Jun 22 2011 EXTENSIONS Corrected and extended by Harvey P. Dale, Nov 01 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 22:02 EDT 2024. Contains 372765 sequences. (Running on oeis4.)