login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A192063 E.g.f. 1-sqrt(cos(2*x)) (even part). 0
0, 2, 4, 152, 8944, 933152, 151557184, 35402298752, 11250504212224, 4668840721981952, 2451963626804184064, 1589715293557268682752, 1247113599659216858312704, 1164315843409068590677041152, 127574292191869924893941171814 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..14.

FORMULA

a(n) = sum((k=1..2*n, binomial(2*k-2,k-1)*2^(2*n-2*k+2)*sum(j=1..k, ((sum(i=0..(j-1)/2, (j-2*i)^(2*n)*binomial(j,i)))*binomial(k,j)*(-1)^(n-j))/2^j))/k).

a(n) = 2*sum(k=1..2*n, C(k-1)*sum(i=0..k-1, (i-k)^(2*n)*binomial(2*k,i)*(-1)^(n+k-i))*2^(2*n-3*k+1)), where C(k) = A000108(k). - Vladimir Kruchinin, Oct 05 2012

G.f.: 1 - 1/U(0) where U(k)= 1 - (2*k-1)*(2*k+2)*x/U(k+1); (continued fraction, due Stiltjes T.J, 1-step). - Sergei N. Gladkovskii, Nov 09 2012

G.f.: T(0)+1, where T(k) = -1 + x*(2*k-1)*(2*k+2)/( x*(2*k-1)*(2*k+2) + 1/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 25 2013

a(n) ~ (2*n)! * 2^(4*n-2)/(n^(3/2)*Pi^(2*n)). - Vaclav Kotesovec, Nov 07 2013

MATHEMATICA

Table[n!*SeriesCoefficient[1-Sqrt[Cos[2*x]], {x, 0, n}], {n, 0, 40, 2}] (* Vaclav Kotesovec, Nov 07 2013 *)

PROG

(Maxima)

a(n):=sum((binomial(2*k-2, k-1)*2^(2*n-2*k+2)*sum(((sum((j-2*i)^(2*n) *binomial(j, i), i, 0, (j-1)/2))*binomial(k, j)*(-1)^(n-j))/2^j, j, 1, k))/k, k, 1, 2*n);

CROSSREFS

Sequence in context: A018517 A018539 A018544 * A018558 A296463 A132528

Adjacent sequences:  A192060 A192061 A192062 * A192064 A192065 A192066

KEYWORD

nonn

AUTHOR

Vladimir Kruchinin, Jun 22 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 16 01:36 EST 2017. Contains 296063 sequences.