login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326794
E.g.f. A(x) = A(x,x), where A(x,y) is the e.g.f. of triangle A326797.
3
1, -4, -24, 832, 14080, -1178112, -40198144, 6102368256, 350164353024, -84145181818880, -7290125908443136, 2544780720155394048, 310189596697035800576, -148294858002251055628288, -24194060487469916561080320, 15177404660097357616248782848, 3193403421862605489912894455808, -2544493850062379218318289711136768, -670888183682611536585868983069048832, 661838176807194100001000065515567185920
OFFSET
1,2
COMMENTS
Equals the row sums of triangle A326797.
FORMULA
E.g.f. A(x) and related functions B(x) and C(x), defined by A326795 and A326796, respectively, satisfy:
(1) A(x)^2 + B(x)^2 + C(x)^2 = 1,
(2) A(x)*A'(x) + B(x)*B'(x) + C(x)*C'(x) = 0.
EXAMPLE
E.g.f.: A(x) = x - 4*x^3/3! - 24*x^5/5! + 832*x^7/7! + 14080*x^9/9! - 1178112*x^11/11! - 40198144*x^13/13! + 6102368256*x^15/15! + 350164353024*x^17/17! - 84145181818880*x^19/19! + ...
PROG
(PARI) {a(n) = my(Ax=1, Bx=x, Cx=1, Ay=1, By=y, Cy=1);
for(i=0, 2*n+1,
Ax = 0 + intformal( Bx*Cy - Cx*By, x) + O(x^(2*n+2));
Bx = 1 + intformal( Cx*Ay - Ax*Cy, x) + O(x^(2*n+2));
Cx = 0 + intformal( Ax*By - Bx*Ay, x) + O(x^(2*n+2));
Ay = 0 + intformal( By*Cx - Cy*Bx, y) + O(y^(2*n+2));
By = 0 + intformal( Cy*Ax - Ay*Cx, y) + O(y^(2*n+2));
Cy = 1 + intformal( Ay*Bx - By*Ax, y) + O(y^(2*n+2));
);
sum(k=0, n, (2*n+1)! * polcoeff( polcoeff(Ax, 2*n-2*k+1, x), 2*k, y))}
for(n=0, 20, print1( a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Aug 05 2019
STATUS
approved