Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Aug 06 2019 06:17:24
%S 2,-4,-154,1336,139402,-2516812,-531298962,16291452784,5792759106578,
%T -269619415772564,-144868583759257994,9514326895639572136,
%U 7196653593954009006746,-633707576374342516652764,-641861736344903371972973954,72970336686693711886017561312,95350631737851404765088770262050,-13593601759174079774108596113815332,-22265118012504823914985759717325911674
%N E.g.f. C(x) = C(x,x), where C(x,y) is the e.g.f. of triangle A326799.
%C Equals the row sums of triangle A326799.
%F E.g.f. C(x) and related functions A(x) and B(x), defined by A326794 and A326795, respectively, satisfy:
%F (1) A(x)^2 + B(x)^2 + C(x)^2 = 1,
%F (2) A(x)*A'(x) + B(x)*B'(x) + C(x)*C'(x) = 0.
%e E.g.f.: C(x) = 2*x^2/2! - 4*x^4/4! - 154*x^6/6! + 1336*x^8/8! + 139402*x^10/10! - 2516812*x^12/12! - 531298962*x^14/14! + 16291452784*x^16/16! + 5792759106578*x^18/18! - 269619415772564*x^20/20! + ...
%o (PARI) {a(n, k) = my(Ax=x, Bx=1, Cx=x, Ay=y, By=y, Cy=1);
%o for(i=0, 2*n+1,
%o Ax = 0 + intformal( Bx*Cy - Cx*By, x) + O(x^(2*n+2));
%o Bx = 1 + intformal( Cx*Ay - Ax*Cy, x) + O(x^(2*n+2));
%o Cx = 0 + intformal( Ax*By - Bx*Ay, x) + O(x^(2*n+2));
%o Ay = 0 + intformal( By*Cx - Cy*Bx, y) + O(y^(2*n+2));
%o By = 0 + intformal( Cy*Ax - Ay*Cx, y) + O(y^(2*n+2));
%o Cy = 1 + intformal( Ay*Bx - By*Ax, y) + O(y^(2*n+2));
%o );
%o sum(k=0,n, (2*n+2)! * polcoeff( polcoeff(Cx, 2*n-2*k+1, x), 2*k+1, y))}
%o for(n=0, 20, print1( a(n), ", "))
%Y Cf. A326794, A326795, A326799.
%K sign
%O 2,1
%A _Paul D. Hanna_, Aug 05 2019