login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325904
Generator sequence for A100982.
2
1, 0, -3, -8, 15, -91, -54, 2531, -17021, 43035, -66258, 1958757, -24572453, 146991979, -287482322, -3148566077, 35506973089, -198639977241, 1006345648929, -8250266425561, 76832268802555, -517564939540551, 1890772860334557, 3323588929061820, -104547561696315008, 907385094824827328, -6313246535826877248
OFFSET
0,3
COMMENTS
The name of this sequence is derived from its main purpose as a formula for A100982 (see link). Both formulas below stem from Mike Winkler's 2017 paper on the 3x+1 problem (see below), in which a recursive definition of A100982 and A076227 is created in 2-D space. These formulas redefine the sequences in terms of this 1-D recursive sequence.
FORMULA
a(0)=1, a(1)=0, a(n) = -Sum_{k=0..n-1} a(k)*binomial(A325913(n)+n-k-2, A325913(n)-2) for n>1.
PROG
(Python)
import math
numberOfTerms = 20
L6 = [1, 0]
def c(n):
return math.floor(n/(math.log2(3)-1))
def p(a, b):
return math.factorial(a)/(math.factorial(a-b)*math.factorial(b))
def anotherTerm(newTermCount):
global L6
for a in range(newTermCount+1-len(L6)):
y = len(L6)
newElement = 0
for k in range(y):
newElement -= int(L6[k]*p(c(y)+y-k-2, c(y)-2))
L6.append(newElement)
anotherTerm(numberOfTerms)
print("A325904")
for a in range(numberOfTerms+1):
print(a, "|", L6[a])
(SageMath)
@cached_function
def a(n):
if n < 2: return 0^n
A = floor(n/(log(3, 2) - 1)) - 2
return -sum(a(k)*binomial(A + n - k, A) for k in (0..n-1))
[a(n) for n in range(100)] # Peter Luschny, Sep 10 2019
CROSSREFS
KEYWORD
sign
AUTHOR
Benjamin Lombardo, Sep 08 2019
STATUS
approved