

A325903


Numbers having at least three representations as multinomial coefficients M(n;lambda), where lambda is a partition of n into distinct parts.


4



1, 105, 120, 210, 495, 1260, 1365, 1540, 3003, 4620, 5460, 6435, 7140, 10296, 11628, 15504, 24310, 27720, 29260, 30030, 42504, 43680, 45045, 77520, 83160, 102960, 116280, 120120, 180180, 203490, 352716, 360360, 376740, 437580, 593775, 657800, 680680, 720720
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Numbers occurring at least three times in the triangle A309992.
All terms are contained in A325593 and in A325901.


LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..318
Wikipedia, Multinomial coefficients
Wikipedia, Partition (number theory)


EXAMPLE

1 is in the sequence because M(0;0) = M(1;1) = M(2;2) = M(3;3) = ... = 1.
105 is in the sequence because M(7;4,2,1) = M(15;13,2) = M(105;104,1) = 105.
120 is in the sequence because M(10;7,3) = M(16;14,2) = M(120;119,1) = 120.
1365 is in the sequence because M(15;11,4) = M(15;12,2,1) = M(1365;1364,1) = 1365.


CROSSREFS

Cf. A000009, A309992, A325593, A325901.
Sequence in context: A135999 A162304 A033268 * A095643 A206265 A253022
Adjacent sequences: A325900 A325901 A325902 * A325904 A325905 A325906


KEYWORD

nonn


AUTHOR

Alois P. Heinz, Sep 07 2019


STATUS

approved



