login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325359
Numbers of the form p^y * 2^z where p is an odd prime, y >= 2, and z >= 0.
8
9, 18, 25, 27, 36, 49, 50, 54, 72, 81, 98, 100, 108, 121, 125, 144, 162, 169, 196, 200, 216, 242, 243, 250, 288, 289, 324, 338, 343, 361, 392, 400, 432, 484, 486, 500, 529, 576, 578, 625, 648, 676, 686, 722, 729, 784, 800, 841, 864, 961, 968, 972, 1000, 1058
OFFSET
1,1
COMMENTS
Also Heinz numbers of integer partitions that are not hooks but whose augmented differences are hooks, where the Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k), and a hook is a partition of the form (n,1,1,...,1). The enumeration of these partitions by sum is given by A325459.
LINKS
FORMULA
Sum_{n>=1} 1/a(n) = 2 * Sum_{p prime} 1/(p*(p-1)) - 1 = 2 * A136141 - 1 = 0.54631333809959025572... - Amiram Eldar, Sep 30 2020
EXAMPLE
The sequence of terms together with their prime indices begins:
9: {2,2}
18: {1,2,2}
25: {3,3}
27: {2,2,2}
36: {1,1,2,2}
49: {4,4}
50: {1,3,3}
54: {1,2,2,2}
72: {1,1,1,2,2}
81: {2,2,2,2}
98: {1,4,4}
100: {1,1,3,3}
108: {1,1,2,2,2}
121: {5,5}
125: {3,3,3}
144: {1,1,1,1,2,2}
162: {1,2,2,2,2}
169: {6,6}
196: {1,1,4,4}
200: {1,1,1,3,3}
MAPLE
N:= 1000: # to get terms <= N
P:= select(isprime, [seq(i, i=3..floor(sqrt(N)), 2)]):
B:= map(proc(p) local y; seq(p^y, y=2..floor(log[p](N))) end proc, P):
sort(map(proc(t) local z; seq(2^z*t, z=0..ilog2(N/t)) end proc, B)); # Robert Israel, May 03 2019
MATHEMATICA
Select[Range[1000], MatchQ[FactorInteger[2*#], {{2, _}, {_?(#>2&), _?(#>1&)}}]&]
CROSSREFS
Positions of 2's in A325355.
Numbers n such that n does not belong to A093641 but A325351(n) does.
Sequence in context: A038838 A347247 A038837 * A307579 A319927 A034046
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 02 2019
STATUS
approved