login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325289
G.f. A(x) satisfies: Sum_{n>=0} x^n*A(x)^(n*(n+1)/2) = Sum_{n>=0} x^n*(1+x)^(n^2).
3
1, 1, 1, 3, 9, 41, 200, 1096, 6440, 40095, 262298, 1790395, 12699751, 93311273, 708519038, 5549751855, 44780255681, 371785828813, 3173019719939, 27813799706468, 250222091088035, 2308676057468240, 21831456961064288, 211449264040904335, 2096345122112307560, 21261235260097878478, 220457711039776064974, 2335722548273384751833
OFFSET
0,4
LINKS
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 9*x^4 + 41*x^5 + 200*x^6 + 1096*x^7 + 6440*x^8 + 40095*x^9 + 262298*x^10 + 1790395*x^11 + 12699751*x^12 + ...
such that the following series are equal:
B(x) = 1 + x*A(x) + x^2*A(x)^3 + x^3*A(x)^6 + x^4*A(x)^10 + x^5*A(x)^15 + x^6*A(x)^21 + x^7*A(x)^28 + x^8*A(x)^36 + ...
B(x) = 1 + x*(1+x) + x^2*(1+x)^4 + x^3*(1+x)^9 + x^4*(1+x)^16 + x^5*(1+x)^25 + x^6*(1+x)^36 + x^7*(1+x)^49 + x^8*(1+x)^64 + ...
where
B(x) = 1 + x + 2*x^2 + 5*x^3 + 16*x^4 + 57*x^5 + 231*x^6 + 1023*x^7 + 4926*x^8 + 25483*x^9 + 140601*x^10 + ... + A121689(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);
A[#A] = -polcoeff( sum(m=0, #A, x^m*( Ser(A)^(m*(m+1)/2) - (1+x +x*O(x^#A))^(m^2)) ), #A) ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 25 2019
STATUS
approved