login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325286
G.f. satisfies: 1 = Sum_{n>=0} (1+x)^(n*(n-1)/2) / A(x)^n * 1/2^(n+1).
3
1, 1, 3, 25, 343, 6441, 150975, 4203201, 134852079, 4886641681, 197154406591, 8760602600193, 425074860993439, 22363792326962881, 1268239233311498079, 77129745316500047745, 5008173999379887257151, 345838251972031108425345, 25309861534968595801377279, 1956926079593452273940279169, 159406563966400881627947865279, 13645204581985719926987977747329, 1224591755319676016226530026499583, 114980206425267526899287638805977857
OFFSET
0,3
COMMENTS
a(n) == 1 (mod 2) for n >= 0.
Conjecture: a(n) == 1 (mod 3) iff n is a number whose base-3 representation contains no 2 (cf. A005836), otherwise a(n) == 0 (mod 3).
LINKS
FORMULA
G.f. satisfies:
(1) 1 = Sum_{n>=0} (1+x)^(n*(n-1)/2) / A(x)^n * 1/2^(n+1).
(2) 1 = Sum_{n>=0} (1+x)^(n*(n+1)/2) / A(x)^(n+1) * 1/2^(n+1).
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 25*x^3 + 343*x^4 + 6441*x^5 + 150975*x^6 + 4203201*x^7 + 134852079*x^8 + 4886641681*x^9 + 197154406591*x^10 + ...
such that
1 = 1/2 + 1/(2^2*A(x)) + (1+x)/(2^3*A(x)^2) + (1+x)^3/(2^4*A(x)^3) + (1+x)^6/(2^5*A(x)^4) + (1+x)^10/(2^6*A(x)^5) + (1+x)^15/(2^7*A(x)^6) + (1+x)^21/(2^8*A(x)^7) + ...
also,
1 = 1/(2*A(x)) + (1+x)/(2*A(x))^2 + (1+x)^3/(2*A(x))^3 + (1+x)^6/(2*A(x))^4 + (1+x)^10/(2*A(x))^5 + (1+x)^15/(2*A(x))^6 + (1+x)^21/(2*A(x))^7 + (1+x)^28/(2*A(x))^8 + ...
PROG
(PARI) /* Requires adequate precision */
{a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0); A[#A] = round( polcoeff( sum(m=0, 10*#A+100, (1+x+x*O(x^#A))^(m*(m-1)/2)/Ser(A)^m/2^(m+1)*1.), #A-1))); A[n+1]}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Cf. A303290.
Sequence in context: A023997 A154961 A322760 * A085527 A093360 A161629
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 18 2019
STATUS
approved